20 незаменимых аминокислот: Роль аминокислот в программах омоложения
Роль аминокислот в программах омоложения
Аминокислоты — мономеры белков.В состав белков входят 20 разновидностей АК. Они связываются между собой пептидными связями и образуют молекулу полимера — полипептид.
Как воздействуют аминокислоты на процессы похудения?
Помощь белковых «кирпичиков» состоит в следующем:
- «разгоняют» скорость метаболизма;
- сжигают излишки жира в зонах его скопления;
- снижают аппетит;
- уменьшают количество холестерина и сахара;
- являются источником дополнительной энергии;
- относятся к группе антиоксидантов;
- наращивают мышечные ткани, вместо жировых прослоек;
- помогают сбросить вес в ходе тренировок.
Какие же аминокислоты жизненно необходимы для человека?
1) Незаменимые аминокислоты:
- Валин
- Лейцин
- Изолейцин
- Лизин
- Метионин
- Треонин
- Фенилаланин
- Триптофан
- Гликокол
- Аланин
- Цитруллин
- Серин
- Цистин
- Аспарагиновая кислота
- Глютаминовая кислота
- Тирозин
- Пролин
- Оксипролин
- Аргинин
- Гистидин
L-карнитин же, который принято считать жиросжигателем, тоже относится формально к аминокислотам. На самом деле, он участвует в процессе похудения, доставляя жиры к месту их расщепления интенсивнее, чем этот процесс идет обычно, потому и усиливает эффект физических нагрузок для похудения.
Триптофан и тирозин подавляют чувство голода, регулируя уровень гормона инсулина в крови. Потому эти аминокислоты можно применять для похудения без тренировок, только на фоне ограниченного питания. К тому же, триптофан обладает некоторым успокаивающим действием, что позволяет снизить уровень стресса, который вызывают диеты и переживания о лишнем весе.
- Лизин: злаковые и молочные продукты, яйца, орехи, рыба
- Гистидин: бобовые и мясные продукты
- Триптофан: кунжут, финики, бананы
- Треонин: яйца и молочные продукты
- Фенилаланин: крупы, бобовые, мясные продукты
Убихинон (Q10) — присутствует в любой клетке организма. Защищает организм от воздействия свободных радикалов. Обязательная составляющая часть программ лечения ожирения, гипертонии, диабета. Но главное, способно замедлять процессы старения
Креатин — белок, поставляющий энергию для сокращения мышц;
Организм синтезирует этот белок из аминокислот аргинина, глицина, метионина. Терапевтический эффект наступает при приеме 20 г в сутки.
Повышение качества жизни и энергичности
Следить за рационом питания, в котором, в котором много белка и мало простых сахаров
Необходимы: Магний 400-800 мг, Глутатион 0,5-1г, Витамин С3-5 г, Витамин Е 600-1000 МЕ (высвобождает эстроген из жировых клеток).
Целлюлит — это интоксикация соединительно -тканного матрикса дермы и гиподермы. Причина — нарушение клеточного дренажа, циркуляторного,иммунного, гормонального нарушения в организме.
Необходимо улучшить крово-и лимфообращение, стимулировать метаболизм адипоцитов, проводить детоксикации подкожно-жировой клетчатки, активизировать липолиз, нормализовать гормональную сферу.
Посмотреть бесплатный вебинар о роли аминокислот в программах омоложения и коррекции фигуры.
20 аминокислот с формулами.
Определение 1
Аминокислоты (пептиды, аминокарбоновые кислоты) – это тип органических соединений, которые состоят из аминов (производных аммония 16 %).
Состав заменимых и незаменимых аминокислот
Их функцией является участие в биосинтезе белка. Любой белок расщепляется на аминокислоты внутри пищеварительного тракта человека. В природе существует примерно 200 пептидов, но для построения биологических организмов необходимы только 20 из них. Все аминокислоты делятся на заменимые и незаменимые. В ряде случаев можно выделить условно заменимые аминокислоты.
Заменимые аминокислоты – это группа аминокислот, которые потребляются с продуктами питания, но при этом также производятся внутри тела человека из других веществ. Среди них выделяют:
Готовые работы на аналогичную тему
- аланин – мономер большого числа белков, участвующей в глюкогенезе, превращаясь в глюкозу в печени. Регулирует метаболические процессы в теле человека;
- аргинин – аминокислота, которая синтезируется в теле взрослого, но не образуется в организме ребенка. Участвует в системе синтеза гормона роста и других. Кроме данной аминокислоты в организме не существует соединений, способных переносить азот. Способствует увеличению мышечной массы, за счет снижения жировой;
- аспарагин – пептид азотного обмена. В совокупности с ферментами дает возможность отщеплять аммониак и превращаться в аспарагиновую кислоту.;
- аспаргиновая кислота — участвует в создании иммуноглобулинов и деактивации аммиака. Способствует восстановлению при дисбалансе в работе нервной системы и сердечного цикла
- гистидин – используется для лечения болезней кишечника и профилактики СПИДа. Снижает негативное воздействие стрессовых факторов на организм;
- глицин является веществом нейромедиатором. Имеет мягкое успокоительное действие;
- глутамин входит в состав гемоглобина, стимулирует метаболизм в центральной нервной системе;
- глютаминовая кислота – регулирует работу периферической нервной системы;
- пролин входит в состав всех протеинов, особенно эластина и коллагена;
- серин представляет собой аминокислоту, содержащуюся в нейронах головного мозга. Способствует образованию и высвобождению энергии. Образуется из глицина;
- тирозин входит в состав тканей животных и растений. Иногда восстанавливается из фенилаланина;
- цистеин является компонентом кератина. Входит в группу антиоксидантов, иногда воспроизводится из серина.
Замечание 1
В перечне приведен неполный список функций аминокислот, который может быть дополнен.
Определение 2
Незаменимые аминокислоты — это группа аминокислот, которые не могут синтезироваться в организме человека. Их можно получить только с пищей, употребляя различные продукты.
К ним относятся:
- валин, повышающий координацию работы мышц, позволяющий обеспечить устойчивость организма к колебанию температур;
- изолейцин или естественный анаболик, насыщающий мышц энергией;
- лейцин – регулятор всех метаболических процессов. Строитель структуры белка. Все три вышеописанные аминокислоты входят в комплекс BCAA. Он очень важен для спортсменов. Эти вещества значительно увеличивают мышечную массу, снижают уровень развития ПЖК (в допустимых пределах). Обеспечивают поддержание гомеостаза при высоком уровне физических нагрузок;
- лизин ускоряет регенерацию тканей, вырабатывает гормоны, ферменты и антитела. Способствует повышению прочности сосудов. Входит в состав коллагена;
- метионин участвует в синтезе холина, уменьшает содержание жира в печени;
- треонин укрепляет сухожилия и зубную эмаль;
- триптофан регулирует эмоциональное состояние, способствует лечению психических расстройств личности;
- фениалалнин регулирует деятельность кожных покровов, снижая их пигментацию, способствует достижению водно – солевого баланса в верхних слоях кожи.
Химические формулы аминокислот
Формулы всех аминокислот представлены на рисунках.
Рисунок 1. Формулы аминокислот. Автор24 — интернет-биржа студенческих работ
Рисунок 2. Формулы аминокислот. Автор24 — интернет-биржа студенческих работ
Последствия наличия избытка или недостатка аминокислот в организме
Многие аминокислоты, как уже отмечалось ранее регулируют метаболизм. Другими словами, любая аминокислота позволяет организму получить достаточное количество энергии, которая позволяет реализовать химические реакции, лежащие в основе дыхания, когнитивной деятельности, регуляции психоэмоционального состояния.
То, что существуют такие аминокислоты, которые содержатся исключительно в продуктах животного происхождения, – миф. Ученые выяснили, что белок растительного происхождения усваивается в организме человека гораздо лучше животного. Но, если люди выбирают для себя веганский тип питания, то им необходимо следить за своим рационом.
Основная проблема такова, что в ста граммах мяса и в таком же количестве бобов содержится разное количество АМК в процентном соотношении. На первых порах необходимо вести учёт содержания аминокислот в потребляемой пище, затем уже это должно дойти до автоматизма. Нельзя увлекаться голоданием или какой – либо конкретной группой продуктов, поскольку это не даст возможности соблюдать все вышеописанные нормы баланса веществ.
При нехватке аминокислот в организме возможны следующие симптомы:
- плохое самочувствие;
- отсутствие потребности в еде;
- повышенная утомляемость;
- нарушения гомеостаза.
Если в организме нахватает даже какой-либо одной аминокислоты, то это может вызвать колоссальное количество неприятных эффектов, ухудшающих самочувствие. Перенасыщение аминокислотами также опасно. Оно может повлечь за собой нарушения, симптомы которых похожи на пищевые отравления.
Каждый человек, так или иначе, задумывает о том, какое количество аминокислот ему необходимо употребить в сутки. Все 20 аминокислот благополучно поступают с пищей в организм человека. Их количества хватает для людей ведущих нормальный здоровый образ жизни. Но в рационе спортсмена белок должен иметь ведущие позиции, так как без его достаточного уровня нельзя достичь высокой степени развития мышечной массы.
Таким образом, необходимо соблюдать меру при построении собственного рациона и своевременно корректировать свои пищевые привычки.
Незаменимые аминокислоты. Справка — РИА Новости, 28.02.2011
Валин необходим для метаболизма в мышцах, он активно участвует в процессах восстановления поврежденных тканей. Помимо этого, он может быть использован мышцами в качестве дополнительного источника энергии. Валином богаты зерновая пища, мясо, грибы, молочные продукты, а также арахис.
Лизин необходим для нормального формирования костей и роста детей, способствует усвоению кальция и поддержанию нормального обмена азота у взрослых. Лизин участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей. Пищевыми источниками лизина являются сыр, яйца, рыба, молоко, картофель, красное мясо, соевые и дрожжевые продукты.
Лейцин защищает мышечные ткани и может являться источником энергии. Его наличие способствует восстановлению костей, кожи, мышечной ткани. Снижает уровень холестерина. К пищевым источникам лейцина относятся бурый рис, бобовые, мясо, орехи.
Изолейцин необходим для синтеза гемоглобина, увеличивает выносливость и способствует восстановлению мышц. К пищевым источникам изолейцина относятся куриное мясо, кешью, яйца, рыба, чечевица, мясо, рожь, миндаль, нут (турецкий горох), печень, соя.
Треонин способствует поддержанию нормального белкового обмена в организме, помогая при этом работе печени. Необходим организму для правильной работы иммунной системы. Содержится в яйцах, молочных продуктах, бобах и орехах.
Метионин способствует нормальному пищеварению, сохранению здоровой печени, участвует в переработке жиров, защищает от воздействия радиации. Метионин содержится в бобовых, яйцах, чесноке, луке, йогурте мясе.
Фенилаланин является нейромедиатором для нервных клеток головного мозга. Эффективно помогает при депрессии, артрите, мигрени, ожирении. Не усваивается организмом, которому не хватает витамина С. Содержится в говядине, курином мясе, рыбе, соевых бобах, яйцах, твороге, молоке, а также является составной частью синтетического сахарозаменителя — аспартама.
Триптофан используется организмом для синтеза в головном мозге серотонина, который в свою очередь является важнейшим нейромедиатором. Необходим при бессоннице, депрессии и для стабилизации настроения. Снижает вредное воздействие никотина. В пище эта аминокислота находится в буром рисе, деревенском сыре, мясе, бананах, йогурте, сушеных финиках, курице, кедровых орехах и арахисе.
Потребность человека в незаменимых аминокислотах составляет от 250 до 1100 миллиграммов в сутки. Существуют биологически активные добавки, содержащие необходимые дозы этих веществ. Особо внимание восполнению их в организме рекомендуется уделять вегетарианцам (поскольку некоторые незаменимые аминокислоты в необходимых количествах содержатся только в продуктах животного происхождения), беременным женщинам и спортсменам.
Материал подготовлен на основе информации открытых источников
Смотрите полный выпуск программы «Сытые и стройные» с Маргаритой Королевой: «Пища для мозга, или Что надо есть, чтобы ничего не забывать» >>
«Сколько известно аминокислот?» – Яндекс.Кью
Мой ответ. Учёным известно порядка 500 аминокислот. Около 240 из них в природе бывают в свободном виде, а остальные — в промежуточном — как продукты обмена веществ.
На сегодняшний день в организме человека обнаружено 26 аминокислот.
В образовании белка, считается, принимают участие 22 аминокислоты (21 — селеноцистеин, 22 — пирролизин (стандартные протеиногенные аминокислоты). https://ru.wikipedia.org/wiki/
Все аминокислоты можно разделить на две группы: незаменимые (поступают в организм извне) и заменимые (синтезируются в организме). Но есть ещё и третья, и четвёртая группа — частично заменимые и условно незаменимые. Но это разделение весьма условно. Вообще, чтобы производить такие «подсчёты», необходимо учитывать, о какаких именно организмах идёт речь.
Для взрослого здорового человека незаменимые аминокислоты: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин, селеноцистеин, пирролизин. Это 10 незаменимых аминокислот. Также часто к незаменимым относят гистидин. Это 11 аминокислота. Для детей также незаменимым является аргинин. Итого насчитывается 12 аминокислот незаменимых для человека.
Новорождённые дети и больные люди не могут вырабатывать некоторые аминокислоты. Эти аминокислоты считаются условно незаменимыми. К ним относятся: тирозин, цистеин. Они могут синтезироваться в организме, но при наличии других аминокислот.
Частично заменимые — их организм синтезирует, но мало. Это аргинин и гистидин. Как видим, аргинин и гистидин по другим классификациям относят к незаменимым, а ещё по другим — условно заменимым. А иногда и условно незаменимые, и частично заменимые объединяют в одну группу.
К заменимым аминокислотам принято относить: аланин, аспарагин, аспарагиновая кислота (аспартат), глицин, цистеин, глютамин, глютаминовая кислота (глютамат), пролин, серин, таурин*, тирозин. Насчитывается 11 заменимых аминокислот.
*Таурин выполняет некоторые функции аминокислот, но по строению к ним не относится.
Таким образом, мнение, что существуют 20 аминокислот, из которых 8 незаменимые, является неверным.
Сколько всего аминокислот существует?
Выберите разделВ помощь кондитеруКак применятьПолезно знатьРецептуры и технологииРецептыРецепты кондитера
Этот блог не предназначен для предоставления диагностики, лечения или медицинской консультации. Контент, представленный в этом блоге, предназначен только для информационных целей. Пожалуйста, проконсультируйтесь с врачом или другим медицинским работником относительно любых медицинских или связанных со здоровьем диагнозов или вариантов лечения. Информация в этом блоге не должна рассматриваться в качестве замены консультации с медицинским работником. Утверждения, сделанные о конкретных продуктах в этом блоге, не одобрены для диагностики, лечения, лечения или профилактики заболеваний.
Как вы думаете – сколько всего аминокислот существует? Давайте разберемся в этом вопросе. Аминокислоты — это в первую очередь «фундамент» для образования в нашем организме протеинов, гормонов, антител, белков в тканях, различных ферментов. Все белки – это соединенные в определенной последовательности цепочки из аминокислот. Если отсутствует одна аминокислота, то строительство молекулы белка становится попросту невозможным.
Каково назначение этих элементов? Аминокислоты в первую очередь обеспечивают функционирование практически всех систем в организме, угнетая или наоборот стимулируя все процессы жизнедеятельности:
- обогащают энергией, необходимой для мышечной ткани;
- обеспечивают правильную работу и функционирование нервной системы, являясь нейромедиаторами;
- активно участвуют в водно-солевом обмене.
На сегодняшний день обнаружено 26 аминокислот. Простыми компонентами в образовании белка, считаются 20 аминокислот. Все живые организмы образуют множество различных соединений белка. Все аминокислоты можно разделить на две группы:
1. Аминокислоты незаменимые – они поступают в наш организм исключительно с белковой пищей. Это следующие кислоты:
- гистидин;
- метионин;
- треонин;
- изолейцин;
- лейцин;
- фенилаланин;
- триптофан;
- валин.
2. Аминокислоты заменимые – они поступают в человеческий организм с белковой пищей или строятся из других аминокислот. В их число входят:
- аланин;
- глицин;
- аргинин;
- аспарагин;
- кислота аспарагиновая;
- цистеин;
- кислота глютаминовая;
- глютамин;
- пролин;
- серин;
- таурин;
- тирозин.
А где же эти аминокислоты синтезируются? Основная масса аминокислот в организме человека образуется в печени. Но к сожалению, стрессы, инфекции, старение и многие другие факторы, нарушают эти процессы, что ведет к быстрому истощению организма и потере физической активности.
Чтобы и вы получили такой ошеломительный эффект, покупайте кондитерские ингредиенты по промокоду BLOG со скидкой в 10%, который распространяется на все заказы до 15 кг! И до встреч в новых статьях!
Незаменимые аминокислоты ЕАА и их эффекты, источники и дозировка
Вы знаете что объединяет ВСАА и ЕАА? Прочитайте нашу статью о том, почему незаменимые аминокислоты являются строительным элементом для тела и важной частью рациона спортсменов. Узнайте, какие аминокислоты считаются незаменимыми, как их принимать и использовать для достижения своих фитнес целей. Уже слово “незаменимые” в названии аминокислот указывают на то, что они необходимы для нашего организма. Прежде чем мы расскажем о каждой незаменимой аминокислоте и ее эффектах, давайте рассмотрим список аминокислот для нашего тела и их разделение.
Что такое аминокислоты?
Аминокислоты это структурирующие элементы содержащие азот, углерод, водород, кислород с разнообразной группой боковых цепей которые образуют пептиды и белки. Они представляют 75% массы тела, 95% мышц, включая мышцы сердца. К тому же, именно из аминокислот вырабатываются 100% гормонов, нейротрансмиттеров. [3]
В нашей ДНК закодировано 20 аминокислот, которые участвуют в синтезе белков, причем 9 из них незаменимые. Это значит, что 9 незаменимых аминокислот необходимо принимать с едой или добавками. [1] Аминокислоты делятся на заменимые и незаменимые, а также условно незаменимые аминокислоты. Пока в теле не хватает 1 незаменимой аминокислоты или заменимой, остальные 19 аминокислот практически не используются. [4]
К незаменимым аминокислотам относятся [2]:
- гистидин
- изолейцин
- лейцин
- лизин
- метионин
- фенилаланин
- треонин
- триптофан
- валин
Незаменимые аминокислоты отличаются в зависимости от типа и возраста. Поэтому некоторые эксперты считают незаменимыми только 8 аминокислот, исключая гистидин. Тем не менее, научное общество работает со всеми 9 незаменимыми аминокислотами, без исключений. [3]
Заменимыми аминокислотами считаются те, которые тело может производить самостоятельно, даже если их не принимать с пищей. В этот список включены аланин, аргинин, аспарагиновая кислота, цистеин, глютаминовая кислота, глютамин, глицин, пролин, серин и тирозин. [2]
Условно заменимые аминокислоты они производятся самостоятельно если организм не подвержен заболеванию или стрессу. К этой категории относятся аргинин, цистеин, глютамин, тирозин, глицин, орнитин, пролин и серин. [2]
Вас можуть зацікавити ці продукти:
Незаменимые аминокислоты и их эффекты
Основным отличием между незаменимыми аминокислотами и остальными аминокислотами является то, что их необходимо дополнять. Это значит, что ваш рацион должен быть сбалансирован и дополнен каждой незаменимой аминокислотой. Почему? Мы объясним это на примерах конкретных незаменимых аминокислот в человеческом организме.
1. Лизин
Лизин играет важную роль в росте мышц, поддержании здоровья костей, регенерации после травм или операции. К тому же, он регулирует выработку гормонов, антител и энзимов в теле. Он может предоставлять противовирусные эффекты и необходим для выработки энергии, функционирования иммунитета и производства коллагена и эластина. [5] [6]
2. Гистидин
Гистидин облегчает рост, производство кровяных клеток и заживление тканей. Также он помогает поддерживать специальную защитную мембрану нервных клеток, которая называется миелиновая оболочка. Тело метаболизирует гистидин в гистамин, который необходим для иммунитета, репродуктивных функций и пищеварения. Результаты исследования с участием женщин с ожирением показывают, что добавки с гистидином могут снижать ИМТ и инсулинорезистентность. Дефицит гистидина может вызвать анемию и низкий уровень крови у людей с заболеваниями почек или артритом. [5] [7] [8]
3. Треонин
Треонин необходим для здоровья кожи и зубов, потому что он входит в состав эмали, коллагена и эластина. Он поддерживает жировой обмен и может быть полезен для людей с расстройствами пищеварения, беспокойством и легкой депрессией. [5] [9]
4. Метионин
Метионин вместе с незаменимой аминокислотой цистеином необходимы для здоровья кожи и волос. Метионин также помогает поддерживать крепкие ногти. Способствует правильному поглощению селена и цинка и удалению тяжелых металлов из организма, таких как свинец и ртуть. [5] [10]
5. Валин
Валин необходим для психического здоровья, координации мышц и стабильного эмоционального состояния. Спортсмены используют добавки валина для роста мышц, регенерации тканей и в качестве энергетических добавок. Его недостаток может вызвать бессонницу и снижение умственной функции. [5] [11]
6. Изолейцин
Изолейцин поддерживает заживление ран, укрепляет иммунитет и регулирует уровень сахара и выработку гормонов. Он в основном присутствует в мышечной ткани и контролирует уровень энергии. Пожилые люди могут быть более склонны к дефициту изолейцина, чем молодые, что может привести к потере мышечной массы и тремору. [5] [12]
7. Лейцин
Лейцин является важной аминокислотой в синтезе белка. В то же время он регулирует уровень сахара в крови и способствует росту и регенерации мышц и костей. Он также важен для заживления ран и производства гормона роста. Дефицит лейцина может привести к проблемам с кожей, выпадению волос и усталости. Вы можете прочитать больше о лейцине в нашей статье Лейцин и его эффективное использование для роста и регенерации мышц. [5] [13]
Лейцин, изолейцин и валин – аминокислоты с разветвленной цепью, известные как BCAA. Они играют особую роль в организме, включая синтез белка, выработку энергии и образование других аминокислот. Если вы заинтересованы в BCAA, прочитайте нашу статью BCAA и их влияние на организм.
8. Фенилаланин
Фенилаланин помогает организму использовать другие аминокислоты, а также белки и энзимы. Организм превращает фенилаланин в тирозин, который необходим для нормальной работы мозга. Он также является прекурсором нейротрансмиттеров дофамина, адреналина и нейропинефрина. Дефицит фенилаланина встречается редко, но может вызывать экзему, усталость и проблемы с памятью. [14]
Интересным является то, что люди с генетическим заболеванием под названием фенилкетонурия не способны метаболизировать фенилаланин. Таким людям следует избегать продуктов со слишком высоким содержанием фенилаланина.
9. Триптофан
Триптофан необходим для правильного роста детей грудного возраста и является исходным материалом для образования серотонина и мелатонина. Серотонин является нейротрансмиттером, который регулирует аппетит, сон, настроение и боль. Мелатонин также регулирует сон и является частью гормонов сна. [5] [16]
Одно исследование предполагает, что добавление триптофана может улучшить эмоциональную стабильность у здоровых женщин. Напротив, его недостаток вызывает пеллагру, заболевание, которое может привести к деменции, кожной сыпи и проблемам с пищеварением. [5] [15]
Из вышеупомянутых эффектов EAA мы можем сделать вывод, что незаменимые аминокислоты являются основой для здоровья и правильного функционирования организма. Хотя аминокислоты чаще всего связаны с ростом и наращиванием мышечной массы у спортсменов, организм в гораздо большей степени зависит от них. Вот почему мы не должны пренебрегать их употреблением. Их недостаток может негативно повлиять на общее состояние здоровья, включая нервную, репродуктивную, иммунную и пищеварительную системы.
Незаменимые аминокислоты и спорт
Одной из ключевых задач незаменимых аминокислот является их влияние на рост мышц. Многие из EAA участвуют в синтезе белка, и это не только незаменимые аминокислоты BCAA. Они делают это благодаря своей способности активировать путь mTORC1. Если вы занимаетесь фитнесом, возможно, вы уже слышали о mTOR, который эффективно стимулирует синтез белка. MTORC1 включает в себя не только mTOR, но и другие процессы, связанные с синтезом мышечного белка. [20]
mTORC1 контролирует анаболическую и катаболическую сигнализацию скелетных мышц, регулирует рост мышц и их разрушение. Это подтверждается исследованиями, которые показали, что добавление незаменимых аминокислот в сочетании с тренировками с утяжелением оказывает дополнительное влияние на стимулирование синтеза белка по сравнению с тренировками без добавок. [18] [19]
По сути, это означает, что EAA может помочь вам добиться максимальных результатов в фитнесе, стимулируя синтез мышечного белка. Это в свою очередь приводит к росту мышц и сводит к минимуму их потерю.
Источник незаменимых аминокислот
Поскольку наш организм не может вырабатывать незаменимые аминокислоты, важно дополнять их с рационом. К счастью, есть много распространенных продуктов, которые содержат достаточно незаменимых аминокислот. Продукты, в которых мы находим все 9 незаменимых аминокислот, также называются полноценными белками. К ним относятся мясо, рыба и морепродукты, птица, яйца и молочные продукты. Из растительных источников весь набор незаменимых аминокислот содержится в сое, квиноа и гречихе. Остальные растительные источники, такие как орехи или бобовые, не считаются полноценными белками, поскольку в них нет одной или нескольких незаменимых аминокислот.
Если вы вегетарианец и ваша диета разнообразна, вы можете обеспечить правильное употребление всех незаменимых аминокислот. Например, правильный выбор различных видов бобовых, орехов, семян или овощей поможет вам удовлетворить ежедневные потребности в незаменимых аминокислотах даже без продуктов животного происхождения. Тем не менее, вы всегда можете добавить их с пищевыми добавками EAA. [17]
В таблице представлен список незаменимых аминокислот и их источников. [5]
Незаменимые аминокислоты | Источники |
---|---|
лизин | мясо, яйца, соя, черная фасоль, киноа, тыквенные семена |
гистидин | мясо, рыба, индейка, орехи, семена, зерна |
Треонин | творог, ростки пшеницы |
Метионин | яйца, зерна, орехи, семена |
валин | соя, сыр, арахис, грибы, зерна, овощи |
изолейцин | мясо, рыба, индейка, яйца, сыр, чечевица, орехи и семена |
лейцин | молочные продукты, соя, бобовые |
фенилаланин | молочные продукты, мясо, соя, рыба, фасоль, орехи |
триптофан | ростки пшеницы, творог, курица, индейка |
Ежедневная порция незаменимых аминокислот
Вы уже знаете, что для спортсменов ЕАА важна не только для здоровья, но и для достижения целей в фитнесе. Рекомендуемая суточная доза незаменимых аминокислот была определена Всемирной организацией здравоохранения следующим образом [21]:
Незаменимые аминокислоты | мг/кг массы тела | мг на 70 кг |
---|---|---|
гистидин | 10 | 700 |
изолейцин | 20 | 1400 |
лейцин | 39 | 2730 |
лизин | 30 | 2100 |
Метионин + цистеин | 10,4 + 4,1 (общее 15) | 1050 (общее) |
Фенилаланин + тирозин | 25 (общее) | 1750 (общее) |
Треонин | 15 | 1050 |
Триптофан | 4 | 280 |
Валин | 26 | 1820 |
Мы рассказали вам все необходимое, что вы должны знать о EAA. Действительно, употребление незаменимых аминокислот – это путь к здоровью. Поэтому, пожалуйста, расскажите нам в комментариях из каких источников, вы чаще всего получаете EAA. Если вам понравилась эта статья то поддержите ее, поделившись ею.
Источники:
[1] Kamal Patel — Amino Acids – https://examine.com/supplements/amino-acid/
[2] Medline Plus — Amino Acids – https://medlineplus.gov/ency/article/002222.htm
[3] Rosane Oliveira — The essentials — Part One – https://ucdintegrativemedicine.com/2016/02/the-essentials-part-one/#gs.k4fjit
[4] Science Direct — Essential Amino Acids – https://www.sciencedirect.com/topics/medicine-and-dentistry/essential-amino-acid
[5] Jennifer Berry — What to know about essential amino acids – https://www.medicalnewstoday.com/articles/324229.php
[6] U.S. National library of Medicine — Lysine – https://pubchem.ncbi.nlm.nih.gov/compound/L-lysine
[7] R. N. Feng, Y. C. Niu, X. W. Sun, Q. Li, C. Zhao, C. Wang, F. C. Guo, C. H. Sun — Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: a randomised controlled trial – https://link.springer.com/article/10.1007%2Fs00125-013-2839-7
[8] U.S. National library of Medicine — Histidine – https://pubchem.ncbi.nlm.nih.gov/compound/L-histidine
[9] U.S. National library of Medicine — L-Threonine – https://pubchem.ncbi.nlm.nih.gov/compound/L-threonine
[10] U.S. National library of Medicine — Methionine – https://pubchem.ncbi.nlm.nih.gov/compound/L-methionine
[11] U.S. National library of Medicine — Valine – https://pubchem.ncbi.nlm.nih.gov/compound/L-valine
[12] U.S. National library of Medicine — L-isoleucine – https://pubchem.ncbi.nlm.nih.gov/compound/l-isoleucine
[13] U.S. National library of Medicine — Leucine – https://pubchem.ncbi.nlm.nih.gov/compound/L-leucine
[14] U.S. National library of Medicine — Phenylalanine – https://pubchem.ncbi.nlm.nih.gov/compound/L-phenylalanine
[15] M. H. Mohajeri, J. Wittwer, K. Vargas, E. Hogan — Chronic treatment with a tryptophan-rich protein hydrolysate improves emotional processing, mental energy levels and reaction time in middle-aged women – https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/chronic-treatment-with-a-tryptophanrich-protein-hydrolysate-improves-emotional-processing-mental-energy-levels-and-reaction-time-in-middleaged-women/AB54DC8C47AF5C589B87EDD30B382386
[16] U.S. National library of Medicine – Tryptophan – https://pubchem.ncbi.nlm.nih.gov/compound/L-tryptophan
[17] Michelfelder AJ — Soy: a complete source of protein – https://www.ncbi.nlm.nih.gov/pubmed/19145965
[18] Kevin D Tipton, Steven E. Wolf, Elisabet Borsheim, Arthur P. Sanford — Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion – https://www.researchgate.net/publication/11074043_Acute_response_of_net_muscle_protein_balance_reflects_24-h_balance_after_exercise_and_amino_acid_ingestion
[19] Elisabet Borsheim, Kevin D. Tipton, Steven E. Wolf, Robert R. Wolfe — Essential amino acids and muscle protein recovery from resistance exercise – https://www.physiology.org/doi/full/10.1152/ajpendo.00466.2001
[20] Kris Gethin — What lifters need to know about essential amino acids – https://www.bodybuilding.com/content/what-lifters-need-to-know-about-essential-amino-acids.html
[21] World Health Organization — Protein and amino acid requirements in human nutrition – https://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf;jsessionid=4EBC7C8A1A18928BB135996F00E8324A?sequence=1
Незаменимые аминокислоты – основные сведения и правила использования
Аминокислоты – это соединения, которые необходимы для формирования белковых соединений в организме человека. В связи с этим их нередко называют строительными блоками белков. Однако, помимо этого, данные соединения принимают участие в синтезе гормонов и нейротрансмиттеров. Определенные аминокислоты можно использовать в виде пищевых добавок с целью увеличения скорости роста мышц, улучшения спортивных результатов, а также для улучшения настроения.
Все соединения данного типа в зависимости от ряда факторов классифицируются как незаменимые, которые нужны нашему организму, и заменимые. Далее в статье мы рассмотрим все, что нужно знать об этих типах аминокислот, принцип их воздействия на человеческий организм, а также основные правила использования соответствующих добавок.
Что нужно знать о незаменимых аминокислотах
Перед тем как приступить к рассмотрению вопроса о незаменимых соединениях, разберемся, что собой представляют данные вещества. Аминокислоты – это микроэлементы, в состав которых входят азот, водород, кислород, углерод, а также группы переменной боковой цепи.
Человеческий организм для работы всех систем органов нуждается в 20-ти различных аминокислотах. И, несмотря на то, что все они имеют колоссальное значение, к числу незаменимых относятся только 9 из них, а именно:
|
Главным отличием незаменимых аминокислот является то, что они не могут генерироваться в теле человека, поэтому должны поступать в него в виде продуктов питания. Лучшими источниками этих веществ являются белковые продукты животного происхождения, такие как мясо и яйца.
В процессе переваривания белок, поступающий из пищи, расщепляется на аминокислоты, которые затем используются организмом для выполнения различных процессов, включая увеличение мышечных объемов и регулирование работы иммунной системы.
Условно незаменимые аминокислоты и их особенности
Определенные соединения, которые относят к числу заменимых, можно классифицировать как условно незаменимые аминокислоты. Эти вещества необходимы нашему организму только в определенных обстоятельствах, таких как повышенный уровень стресса или болезнь. Так, например, аргинин, который относится к числу заменимых соединений, требуется организму для борьбы с некоторыми видами заболеваний, а именно с раком. В связи с этим данная аминокислота в обязательном порядке должна присутствовать в рационе для удовлетворения потребностей организма.
Значение незаменимых аминокислот для организма
Каждая из представленных выше незаменимых аминокислот выполняет определенную функцию в теле человека. Рассмотрим их более детально:
|
Исходя из всего сказанного выше, можно сделать вывод, что незаменимые аминокислоты используются во всех основных процессах человеческого организма. И, несмотря на то, что большинство из них применяются преимущественно в качестве спортивных добавок, от этих соединений зависит намного больше, чем достижение более высоких спортивных результатов.
Как отмечают специалисты, дефицит незаменимых аминокислот может негативно отразиться на состоянии здоровья и привести к развитию ряда нарушений, включая ухудшение иммунного отклика и снижение репродуктивной функции.
Как прием незаменимых аминокислот влияет на организм
Несмотря на то, что все указанные выше соединения встречаются в продуктах питания, ученые отмечают, что использование комплексов аминокислот в виде добавок положительно влияет на работу организма. Рассмотрим основные полезные свойства этих веществ.
Улучшение настроения и качества сна
Триптофан принимает участие в синтезе серотонина – вещества, которое способно оказывать непосредственное воздействие на качество сна и настроение. Ученые сообщают, что низкий уровень данного вещества приводит к ухудшению настроения, развитию депрессии и нарушению фаз сна.
Ряд исследований показали, что включение в рацион триптофана позволяет избавиться от симптомов всех указанных выше нарушений. Так, в рамках одного из экспериментов с участием женщин пожилого возраста удалось выяснить, что прием одного грамма триптофана в сутки приводит к улучшению настроения и увеличению объемов вырабатываемой организмом энергии.
Повышение эффективности упражнений
Незаменимые аминокислоты с разветвленной цепью часто используются для снижения уровня усталости и улучшения спортивных результатов, так как они ускоряют процесс восстановления мышц после тренировок. Так, в одном исследовании с привлечением профессиональных спортсменов, тренирующихся с отягощениями, ученые установили, что аминокислоты улучшают работу мышечных волокон, снижают болевые ощущения и ускоряют восстановление.
Анализ восьми других исследований продемонстрировал, что использование соединений с разветвленной цепью позволяет более эффективно восстановить мышцы, чем простой отдых. Помимо этого, регулярное потребление 4-х граммов лейцина в день на протяжении 12-ти недель позволило повысить силовые показатели.
Замедление потери мышечной массы
Потеря мышечной массы является вполне естественным процессом, который происходит во время заболеваний, приводящих к снижению уровня физической активности. В результате проведения экспериментов было обнаружено, что незаменимые аминокислоты способны замедлить скорость потери мышц.
Исследование продолжительностью 10 дней показало, что соблюдение постельного режима с ежедневным потреблением 15-ти граммов незаменимых аминокислот позволяет поддерживать синтез мышечного белка, в то время как их отсутствие приводит к снижению генерации белков на 30 процентов. При этом соответствующий эффект наблюдался не только у спортсменов, но и у лиц пожилого возраста.
Снижение веса
Некоторые исследования, проводимые с привлечением животных и людей, показали, что аминокислоты с разветвленной цепью ускоряют процесс жиросжигания. Это было подтверждено в рамках 8-недельного эксперимента, в течение которого участникам давали по 14 граммов комплекса аминокислот ежедневно. Полученный результат превзошел показатели протеина и других специализированных спортивных добавок.
Исследование, проводимое на крысах, направленное на изучение подобного эффекта показало, что регулярное потребление лейцина снижает не объем жира, а всю массу тела на 4 процента. Поэтому с этим ученые сделали вывод о том, что утверждение о возможности снижения объемов подкожного жира в результате потребления незаменимых аминокислот недостоверно. В связи с этим, чтобы точно выяснить, как данный вид соединений влияет на массу тела, потребуются дополнительные исследования.
Рекомендации по использованию и натуральные источники
Из-за того, что организм человека не способен самостоятельно генерировать незаменимые аминокислоты, они должны поступать из рациона. Сегодня известно достаточно большое количество продуктов, позволяющих удовлетворять потребности в данных типах соединений. Но прежде чем их использовать, следует ознакомиться с суточной нормой потребления для каждого из них в соотношении количества граммов на 1 килограмм собственного веса:
|
Лучшими источниками этих веществ являются мясо, морепродукты, яйца и молочные продукты. Однако их также можно встретить в растительных продуктах. Так, например, соя и гречка содержат все девять незаменимых аминокислот, что делает их одними из лучших источников белка. Прочие растительные продукты, такие как бобовые или орехи, включают не все соединения, из-за чего их нельзя назвать полноценной альтернативой указанных выше видов продуктов.
Но если вы придерживаетесь вегетарианской диеты, существует возможность обеспечить организм всеми необходимыми аминокислотами. Для этого потребуется ежедневно включать в свой рацион несколько видов растительных продуктов с высоким содержанием белка, таких как:
|
Однако, если у вас нет такой возможности, врачи настоятельно рекомендуют купить аминокислоты и использовать их в качестве пищевой добавки.
Заключение
Существует 9 аминокислот, незаменимых для нашего организма, которые ежедневно должны присутствовать в рационе человека. Они позволяют обеспечить нормальное функционирование всех систем органов, предотвратить потерю мышечной массы, а также улучшить физические показатели, качество сна и настроение.
Эти соединения встречаются во многих натуральных продуктах животного и растительного происхождении, содержащих белок. Поэтому, используя белковую пищу, вы сможете сохранить свое здоровье и добиться высоких результатов в спорте.
ИСТОЧНИКИ
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897092/
- https://pubmed.ncbi.nlm.nih.gov/19301095/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657121/
Биохимия, незаменимые аминокислоты — StatPearls
Введение
Незаменимые аминокислоты, также известные как незаменимые аминокислоты, представляют собой аминокислоты, которые люди и другие позвоночные не могут синтезировать из промежуточных продуктов метаболизма. Эти аминокислоты должны поступать из экзогенной диеты, потому что в организме человека отсутствуют метаболические пути, необходимые для синтеза этих аминокислот. [1] [2] В питании аминокислоты подразделяются на незаменимые и несущественные. Эти классификации возникли в результате ранних исследований питания человека, которые показали, что определенные аминокислоты необходимы для роста или азотного баланса, даже когда имеется достаточное количество альтернативных аминокислот.[3] Хотя возможны вариации в зависимости от метаболического состояния человека, общепринято считать, что существует девять незаменимых аминокислот, включая фенилаланин, валин, триптофан, треонин, изолейцин, метионин, гистидин, лейцин и лизин. Мнемоническое обозначение PVT TIM HaLL («частный Тим Холл») — это широко используемое устройство для запоминания этих аминокислот, поскольку оно включает в себя первую букву всех незаменимых аминокислот. Что касается питания, девять незаменимых аминокислот можно получить из одного полноценного белка.Полноценный белок по определению содержит все незаменимые аминокислоты. Полноценные белки обычно получают из источников питания животного происхождения, за исключением сои. [4] [5] Незаменимые аминокислоты также доступны из неполных белков, которые обычно представляют собой растительные продукты. Термин «ограничивающая аминокислота» используется для описания незаменимой аминокислоты, присутствующей в пищевом белке в наименьшем количестве по сравнению с эталонным пищевым белком, таким как яичные белки. Термин «ограничивающая аминокислота» может также относиться к незаменимой аминокислоте, которая не отвечает минимальным требованиям для человека.[6]
Fundamentals
Аминокислоты являются основными строительными блоками белков, и они служат азотистыми скелетами для таких соединений, как нейротрансмиттеры и гормоны. В химии аминокислота — это органическое соединение, которое содержит функциональные группы как амино (-Nh3), так и карбоновой кислоты (-COOH), отсюда и название аминокислота. Белки — это длинные цепи или полимеры определенного типа аминокислоты, известной как альфа-аминокислота. Альфа-аминокислоты уникальны, потому что функциональные группы амино и карбоновых кислот разделены только одним атомом углерода, который обычно является хиральным углеродом.В этой статье мы сосредоточимся исключительно на альфа-аминокислотах, из которых состоят белки. [7] [8]
Белки представляют собой цепочки аминокислот, которые собираются через амидные связи, известные как пептидные связи. Разница в группе боковой цепи или R-группе определяет уникальные свойства каждой аминокислоты. Затем уникальность различных белков определяется тем, какие аминокислоты они содержат, как эти аминокислоты расположены в цепи, и другими сложными взаимодействиями, которые цепь осуществляет с собой и с окружающей средой.Эти полимеры аминокислот способны производить разнообразие, наблюдаемое в жизни.
Существует около 20 000 уникальных генов, кодирующих белок, ответственных за более чем 100 000 уникальных белков в организме человека. Хотя в природе встречаются сотни аминокислот, для производства всех белков, присутствующих в организме человека и в большинстве других форм жизни, необходимо всего около 20 аминокислот. Все эти 20 аминокислот представляют собой L-изомер, альфа-аминокислоты. Все они, кроме глицина, содержат хиральный альфа-углерод.И все эти аминокислоты являются L-изомерами с R-абсолютной конфигурацией, за исключением глицина (без хирального центра) и цистеина (S-абсолютная конфигурация из-за серосодержащей R-группы). Следует упомянуть, что аминокислоты селеноцистеин и пирролизин считаются 21-й и 22-й аминокислотами соответственно. Это недавно открытые аминокислоты, которые могут включаться в белковые цепи во время синтеза рибосомных белков. Пирролойзин жизненно важен; однако люди не используют пирролизин для синтеза белка.После трансляции эти 22 аминокислоты также могут быть модифицированы посредством посттрансляционной модификации, чтобы добавить дополнительное разнообразие в генерацию белков. [8]
От 20 до 22 аминокислот, составляющих белки, включают:
Из этих 20 аминокислот девять незаменимы:
Фенилаланин
Валин
Триптофан
Треонин
Метионин
Гистидин
Лейцин
Лизин
Изолейцин
Незаменимые, также известные как незаменимые аминокислоты, можно исключить из рациона.Организм человека может синтезировать эти аминокислоты, используя только незаменимые аминокислоты. Для большинства физиологических состояний здорового взрослого человека указанные выше девять аминокислот являются единственными незаменимыми аминокислотами. Однако такие аминокислоты, как аргинин и гистидин, можно считать условно незаменимыми, поскольку организм не может синтезировать их в достаточных количествах в течение определенных физиологических периодов роста, включая беременность, рост в подростковом возрасте или восстановление после травмы [9].
Механизм
Хотя для синтеза белка человека требуется двадцать аминокислот, люди могут синтезировать только половину этих необходимых строительных блоков.У людей и других млекопитающих есть только генетический материал, необходимый для синтеза ферментов, обнаруженных в путях биосинтеза заменимых аминокислот. Вероятно, есть эволюционное преимущество в удалении длинных путей, необходимых для синтеза незаменимых аминокислот с нуля. Потеряв генетический материал, необходимый для синтеза этих аминокислот, и полагаясь на окружающую среду, чтобы обеспечить эти строительные блоки, эти организмы могут снизить расход энергии, особенно при репликации своего генетического материала.Эта ситуация дает преимущество в выживании; однако это также создает зависимость от других организмов в отношении материалов, необходимых для синтеза белка. [10] [11] [12]
Клиническая значимость
Классификация незаменимых и заменимых аминокислот была впервые представлена в исследованиях питания, проведенных в начале 1900-х годов. Одно исследование (Rose 1957) показало, что человеческое тело способно поддерживать азотный баланс при диете, состоящей только из восьми аминокислот. [13] Эти восемь аминокислот были первой классификацией незаменимых аминокислот или незаменимых аминокислот.В это время ученые смогли идентифицировать незаменимые аминокислоты, проведя исследования кормления очищенными аминокислотами. Исследователи обнаружили, что, когда они исключили из рациона отдельные незаменимые аминокислоты, субъекты не смогли бы расти или поддерживать азотный баланс. Более поздние исследования показали, что некоторые аминокислоты являются «условно незаменимыми» в зависимости от метаболического состояния субъекта. Например, хотя здоровый взрослый может синтезировать тирозин из фенилаланина, у маленького ребенка может не развиться необходимый фермент (фенилаланингидроксилаза) для осуществления этого синтеза, и поэтому они не смогут синтезировать тирозин из фенилаланина, что делает тирозин незаменимым продуктом. незаменимая аминокислота в этих условиях.Эта концепция также появляется при различных болезненных состояниях. По сути, отклонения от стандартного метаболического состояния здорового взрослого человека могут привести организм в такое метаболическое состояние, при котором для баланса азота требуется больше, чем стандартные незаменимые аминокислоты. В общем, оптимальное соотношение незаменимых и заменимых аминокислот требует баланса, зависящего от физиологических потребностей, которые различаются у разных людей. Поиск оптимального соотношения аминокислот в общем парентеральном питании при заболеваниях печени или почек является хорошим примером различных физиологических состояний, требующих различного потребления питательных веществ.Следовательно, термины «незаменимые аминокислоты» и «заменимые аминокислоты» могут вводить в заблуждение, поскольку все аминокислоты могут быть необходимы для обеспечения оптимального здоровья. [1]
При состояниях недостаточного потребления незаменимых аминокислот, таких как рвота или низкий аппетит, могут появиться клинические симптомы. Эти симптомы могут включать депрессию, беспокойство, бессонницу, усталость, слабость, задержку роста у молодых и т. Д. Эти симптомы в основном вызваны недостаточным синтезом белка в организме из-за нехватки незаменимых аминокислот.Необходимое количество аминокислот необходимо для выработки нейромедиаторов, гормонов, роста мышц и других клеточных процессов. Эти недостатки обычно присутствуют в более бедных частях мира или у пожилых людей, которым не уделяется должного ухода [2].
Квашиоркор и маразм являются примерами более серьезных клинических расстройств, вызванных недоеданием и недостаточным потреблением незаменимых аминокислот. Квашиоркор — это форма недоедания, характеризующаяся периферическими отеками, сухим шелушением кожи с гиперкератозом и гиперпигментацией, асцитом, нарушением функции печени, иммунодефицитом, анемией и относительно неизменным составом мышечных белков.Это результат диеты с недостаточным содержанием белка, но достаточным количеством углеводов. Маразм — это форма недоедания, характеризующаяся истощением, вызванным недостатком белка и недостаточным потреблением калорий в целом. [14]
Повышение квалификации / обзорные вопросы
Рисунок
Родовая структура аминокислот. Внесен и создан Майклом Лопесом, B.S.
Ссылки
- 1.
- Hou Y, Yin Y, Wu G. Необходимость в питании «незаменимых аминокислот» для животных и людей.Exp Biol Med (Maywood). 2015 август; 240 (8): 997-1007. [Бесплатная статья PMC: PMC4935284] [PubMed: 26041391]
- 2.
- Hou Y, Wu G. Adv Nutr. 01 ноября 2018 г .; 9 (6): 849-851. [Бесплатная статья PMC: PMC6247364] [PubMed: 30239556]
- 3.
- Reeds PJ. Незаменимые и незаменимые аминокислоты для человека. J Nutr. 2000 Июл; 130 (7): 1835С-40С. [PubMed: 10867060]
- 4.
- Le DT, Chu HD, Le NQ. Улучшение питательного качества растительных белков с помощью генной инженерии.Curr Genomics. 2016 июн; 17 (3): 220-9. [Бесплатная статья PMC: PMC4869009] [PubMed: 27252589]
- 5.
- Hoffman JR, Falvo MJ. Белок — какой лучше? J Sports Sci Med. 2004 сентябрь; 3 (3): 118-30. [Бесплатная статья PMC: PMC3
4] [PubMed: 24482589]
- 6.
- Джуд С., Капур А.С., Сингх Р. Аминокислотный состав и химическая оценка качества белка зерновых культур при поражении насекомыми. Растительная пища Hum Nutr. 1995 сентябрь; 48 (2): 159-67. [PubMed: 8837875]
- 7.
- ЛаПелуса А., Кошик Р. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 5 декабря 2020 г. Физиология, белки. [PubMed: 32310450]
- 8.
- Ву Г. Аминокислоты: метаболизм, функции и питание. Аминокислоты. 2009 Май; 37 (1): 1-17. [PubMed: 19301095]
- 9.
- de Koning TJ. Нарушения синтеза аминокислот. Handb Clin Neurol. 2013; 113: 1775-83. [PubMed: 23622400]
- 10.
- Guedes RL, Prosdocimi F, Fernandes GR, Moura LK, Ribeiro HA, Ortega JM.Пути биосинтеза аминокислот и ассимиляции азота: большая делеция генома в ходе эволюции эукариот. BMC Genomics. 2011 22 декабря; 12 Дополнение 4: S2. [Бесплатная статья PMC: PMC3287585] [PubMed: 22369087]
- 11.
- D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. биосинтетические гены у бактерий. Эволюция. 2014 сентябрь; 68 (9): 2559-70. [PubMed: 24910088]
- 12.
- Сигенобу С., Ватанабе Х., Хаттори М., Сакаки И., Исикава Х.Последовательность генома внутриклеточного бактериального симбионта тлей Buchnera sp. APS. Природа. 2000, 7 сентября; 407 (6800): 81-6. [PubMed: 10993077]
- 13.
- ROSE WC. Потребности в аминокислотах взрослого человека. Nutr Abstr Rev.1957 июл; 27 (3): 631-47. [PubMed: 13465065]
- 14.
- Benjamin O, Lappin SL. StatPearls [Интернет]. StatPearls Publishing; Остров сокровищ (Флорида): 19 июля 2020 г., Квашиоркор. [PubMed: 29939653]
Незаменимые аминокислоты: таблица, сокращения и структура
Аминокислота AlaАланин, обнаруженный в белке в 1875 году, составляет 30% остатков в шелке.Его низкая реакционная способность способствует простой, удлиненной структуре шелка с небольшим количеством поперечных связей, что придает волокнам прочность, сопротивление растяжению и гибкость. В биосинтезе белков участвует только l-стереоизомер.
Аминокислота ArgУ человека аргинин вырабатывается при переваривании белков. Затем он может быть преобразован человеческим организмом в оксид азота, химическое вещество, которое, как известно, расслабляет кровеносные сосуды.
Благодаря своему сосудорасширяющему действию аргинин был предложен для лечения людей с хронической сердечной недостаточностью, высоким уровнем холестерина, нарушением кровообращения и высоким кровяным давлением, хотя исследования в этом направлении все еще продолжаются.Аргинин также может быть получен синтетическим путем, и родственные аргинину соединения можно использовать для лечения людей с дисфункцией печени из-за их роли в стимулировании регенерации печени. Хотя аргинин необходим для роста, но не для поддержания организма, исследования показали, что аргинин имеет решающее значение для процесса заживления ран, особенно у людей с плохим кровообращением.
Аминокислота AsnВ 1806 году аспарагин был очищен из сока спаржи, что сделало его первой аминокислотой, выделенной из природного источника.Однако только в 1932 году ученые смогли доказать, что аспарагин присутствует в белках. Только l-стереоизомер участвует в биосинтезе белков млекопитающих. Аспарагин важен для удаления токсичного аммиака из организма.
Аминокислота AspОбнаруженная в белках в 1868 году аспарагиновая кислота обычно содержится в животных белках, однако только l-стереоизомер участвует в биосинтезе белков. Растворимость этой аминокислоты в воде обусловлена наличием рядом с активными центрами ферментов, таких как пепсин.
Аминокислота CysЦистеин особенно богат белками волос, копыт и кератином кожи, который был выделен из мочевого камня в 1810 году и из рога в 1899 году. Впоследствии он был химически синтезирован. и структура решена в 1903–1904 гг.
Серосодержащая тиоловая группа в боковой цепи цистеина является ключевой для его свойств, обеспечивая образование дисульфидных мостиков между двумя пептидными цепями (как в случае с инсулином) или образование петли в одной цепи, влияя на окончательную структуру белка.Две молекулы цистеина, связанные между собой дисульфидной связью, составляют аминокислоту цистин, которая иногда указывается отдельно в общих списках аминокислот. Цистеин вырабатывается в организме из серина и метионина и присутствует только в l-стереоизомере в белках млекопитающих.
Люди с генетическим заболеванием цистинурия не могут эффективно реабсорбировать цистин в кровоток. Следовательно, в их моче накапливается высокий уровень цистина, где он кристаллизуется и образует камни, которые блокируют почки и мочевой пузырь.
Аминокислота GlnГлутамин был впервые выделен из свекольного сока в 1883 году, выделен из белка в 1932 году и впоследствии химически синтезирован в следующем году. Глютамин — самая распространенная в нашем организме аминокислота, которая выполняет несколько важных функций. У людей глутамин синтезируется из глутаминовой кислоты, и этот этап преобразования жизненно важен для регулирования уровня токсичного аммиака в организме, образуя мочевину и пурины.
Аминокислота GluГлутаминовая кислота была выделена из глютена пшеницы в 1866 году и химически синтезирована в 1890 году.Обычно встречается в белках животных, только l-стереоизомер встречается в белках млекопитающих, которые люди могут синтезировать из обычного промежуточного продукта α-кетоглутаровой кислоты. Мононатриевая соль l-глутаминовой кислоты, глутамат натрия (MSG) обычно используется в качестве приправы и усилителя вкуса. Карбоксильная боковая цепь глутаминовой кислоты может действовать как донор и акцептор аммиака, который токсичен для организма, обеспечивая безопасную транспортировку аммиака в печень, где он превращается в мочевину и выводится почками.Свободная глутаминовая кислота также может разлагаться до диоксида углерода и воды или превращаться в сахара.
Аминокислота Gly
Глицин был первой аминокислотой, выделенной из белка, в данном случае желатина, и единственной неактивной оптически (без d- или l-стереоизомеров ). Структурно простейшая из α-аминокислот, она очень инертна при включении в белки. Тем не менее, глицин играет важную роль в биосинтезе аминокислоты серина, кофермента глутатиона, пуринов и гема, жизненно важной части гемоглобина.
His-аминокислота
Гистидин был выделен в 1896 году, и его структура была подтверждена химическим синтезом в 1911 году. Гистидин является прямым предшественником гистамина, а также важным источником углерода в синтезе пуринов. При включении в белки боковая цепь гистидина может действовать как акцептор и донор протонов, передавая важные свойства при объединении с ферментами, такими как химотрипсин, и ферментами, участвующими в метаболизме углеводов, белков и нуклеиновых кислот.
Для младенцев гистидин считается незаменимой аминокислотой, взрослые могут в течение короткого периода времени обходиться без диетического питания, но по-прежнему считается незаменимой.
Аминокислота Ile
Изолейцин был выделен из сахарной патоки свеклы в 1904 году. Гидрофобная природа боковой цепи изолейцина важна для определения третичной структуры белков, в которые она включена.
У людей, страдающих редким наследственным заболеванием, называемым болезнью мочи кленового сиропа, есть дефектный фермент в пути разложения, который является общим для изолейцина, лейцина и валина.Без лечения метаболиты накапливаются в моче пациента, вызывая характерный запах, который и дал название состоянию.
Аминокислота лей
Лейцин был выделен из сыра в 1819 году и из мышц и шерсти в его кристаллическом состоянии в 1820 году. В 1891 году он был синтезирован в лаборатории.
Только l-стереоизомер присутствует в белке млекопитающих и может расщепляться на более простые соединения ферментами организма.Некоторые связывающие ДНК белки содержат области, в которых лейцины расположены в конфигурации, называемые лейциновыми застежками-молниями.
Аминокислота Lys
Лизин был впервые выделен из казеина молочного белка в 1889 году, а его структура была выяснена в 1902 году. Лизин важен для связывания ферментов с коферментами и играет важную роль в способ функционирования гистонов.
Многие зерновые культуры содержат очень мало лизина, что привело к его дефициту у некоторых групп населения, которые сильно зависят от них в продуктах питания, а также у вегетарианцев и людей, сидящих на низкожирной диете.Следовательно, были предприняты усилия по разработке штаммов кукурузы, богатых лизином.
Аминокислота Met
Метионин был выделен из казеина молочного белка в 1922 году, и его структура была решена лабораторным синтезом в 1928 году. Метионин является важным источником серы для многих соединений в организме, включая цистеин и таурин. Благодаря содержанию серы метионин помогает предотвратить накопление жира в печени и помогает выводить токсины и шлаки метаболизма.
Метионин — единственная незаменимая аминокислота, которая не присутствует в значительных количествах соевых бобов и поэтому производится коммерчески и добавляется во многие продукты из соевого шрота.
Аминокислота Phe
Фенилаланин был впервые выделен из природного источника (ростки люпина) в 1879 году и впоследствии химически синтезирован в 1882 году. Человеческий организм обычно способен расщеплять фенилаланин на тирозин, однако У людей с наследственной фенилкетонурией (ФКУ) фермент, который выполняет это преобразование, неактивен.Если не лечить, фенилаланин накапливается в крови, вызывая задержку умственного развития у детей. Примерно 10 000 детей рождаются с этим заболеванием, поэтому диета с низким содержанием фенилаланина в раннем возрасте может облегчить его последствия.
Pro аминокислота
В 1900 году пролин был синтезирован химическим путем. На следующий год он был выделен из казеина из молочного белка, и его структура оказалась такой же. Люди могут синтезировать пролин из глутаминовой кислоты, которая присутствует только как l-стереоизомер в белках млекопитающих.Когда пролин включается в белки, его особая структура приводит к резким изгибам или перегибам в пептидной цепи, что в значительной степени способствует окончательной структуре белка. Пролин и его производное гидроксипролин составляют 21% аминокислотных остатков волокнистого белка коллагена, необходимого для соединительной ткани.
Аминокислота Ser
Серин был впервые выделен из белка шелка в 1865 году, но его структура не была установлена до 1902 года.Люди могут синтезировать серин из других метаболитов, включая глицин, хотя только l-стереоизомер присутствует в белках млекопитающих. Серин важен для биосинтеза многих метаболитов и часто важен для каталитической функции ферментов, в которые он включен, включая химотрипсин и трипсин.
Нервные газы и некоторые инсектициды действуют путем объединения с остатком серина в активном центре ацетилхолинэстеразы, полностью ингибируя фермент. Активность эстеразы важна для расщепления нейромедиатора ацетилхолина, в противном случае повышается опасно высокий уровень, что быстро приводит к судорогам и смерти.
Аминокислота Thr
Треонин был выделен из фибрина в 1935 году и синтезирован в том же году. Только l-стереоизомер появляется в белках млекопитающих, где он относительно инертен. Хотя он играет важную роль во многих реакциях у бактерий, его метаболическая роль у высших животных, включая человека, остается неясной.
Аминокислота Trp
Структура триптофана, выделенная из казеина (молочного белка) в 1901 году, была установлена в 1907 году, но только l-стереоизомер присутствует в белках млекопитающих.В кишечнике человека бактерии расщепляют пищевой триптофан, выделяя такие соединения, как скатол и индол, которые придают фекалиям неприятный аромат. Триптофан превращается в витамин B3 (также называемый никотиновой кислотой или ниацином), но не в достаточной степени, чтобы поддерживать наше здоровье. Следовательно, мы также должны принимать витамин B3, несоблюдение этого правила приводит к его дефициту, называемому пеллагрой.
Аминокислота Tyr
В 1846 году тирозин был выделен в результате разложения казеина (сырного протеина), после чего он был синтезирован в лаборатории и его структура была определена в 1883 году.Присутствующий только в l-стереоизомере в белках млекопитающих, люди могут синтезировать тирозин из фенилаланина. Тирозин является важным предшественником гормонов надпочечников адреналина и норадреналина, гормонов щитовидной железы, включая тироксин, а также пигмента волос и кожи меланина. В ферментах остатки тирозина часто связаны с активными центрами, изменение которых может изменить специфичность фермента или полностью уничтожить активность.
Страдающие серьезным генетическим заболеванием фенилкетонурия (ФКУ) неспособны превращать фенилаланин в тирозин, в то время как у пациентов с алкаптонурией метаболизм тирозина нарушен, и моча становится отчетливой и темнеет при контакте с воздухом.
Val аминокислота
Структура валина была установлена в 1906 году после его первого выделения из альбумина в 1879 году. В белке млекопитающих присутствует только l-стереоизомер. Валин может разлагаться в организме на более простые соединения, но у людей с редким генетическим заболеванием, называемым болезнью мочи кленового сиропа, неисправный фермент прерывает этот процесс и может оказаться фатальным при отсутствии лечения.
20 аминокислот, входящих в состав белков | Улучшение жизни с помощью аминокислот | О нас | Глобальный веб-сайт Ajinomoto Group
Как известно, различные аминокислоты являются основными компонентами, из которых состоят белки.Аминокислоты составляют важную часть человеческого тела и диеты. Они чрезвычайно важны для правильного функционирования человеческого тела; следовательно, важно понимать, сколько аминокислот составляют белки. Давайте перейдем к выяснению, сколько аминокислот действительно составляют белки.
Сколько аминокислот помогает вырабатывать белки?
В природе идентифицировано около 500 аминокислот, но только 20 аминокислот составляют белки, обнаруженные в организме человека. Давайте узнаем обо всех этих 20 аминокислотах и типах различных аминокислот.
Типы всех аминокислот
Все 20 аминокислот подразделяются на две разные аминокислотные группы. Незаменимые и заменимые аминокислоты вместе составляют 20 аминокислот. Из 20 аминокислот 9 являются незаменимыми аминокислотами, а остальные — заменимыми аминокислотами. Давайте посмотрим на каждую аминокислоту в соответствии с их классификацией.
Незаменимые аминокислоты
BCAA (валин, лейцин и изолейцин)
Аминокислоты с разветвленной цепью (BCAA) представляют собой группу из трех аминокислот (валин, лейцин и изолейцин), которые имеют молекулярную структуру с разветвлением.BCAA богаты мышечными белками, стимулируют рост мышц в организме и обеспечивают энергию во время упражнений.
Лизин
Лизин — одна из наиболее часто упоминаемых незаменимых аминокислот. Такие продукты, как хлеб и рис, как правило, содержат мало лизина. Например, по сравнению с идеальным аминокислотным составом в пшенице мало лизина. Университет Организации Объединенных Наций провел исследование о людях в развивающихся странах, которые зависят от пшеницы как источника белка, и обнаружил недостаток лизина в их рационе.Недостаток лизина и других аминокислот может привести к серьезным проблемам, таким как задержка роста и тяжелые заболевания.
Треонин
Незаменимая аминокислота, которая используется для создания активного центра ферментов.
Фенилаланин
Незаменимая аминокислота, которая используется для производства многих типов полезных аминов.
метионин
Незаменимая аминокислота, которая используется для производства множества различных веществ, необходимых организму.
Гистидин
Незаменимая аминокислота, используемая для производства гистамина.
Триптофан
Незаменимая аминокислота, используемая для производства многих типов полезных аминов.
Незаменимые аминокислоты
Глютамин
Глютамин — одна из самых распространенных аминокислот в организме. Глютамин защищает желудок и желудочно-кишечный тракт. В частности, глутамин используется для выработки энергии в желудочно-кишечном тракте. Глютамин способствует метаболизму алкоголя, защищая печень.
Аспартат
Аспартат — одна из аминокислот, наиболее пригодных для получения энергии.Аспартат — одна из аминокислот, наиболее близко расположенных к циклу трикарбоновых кислот (ТСА) в организме, который производит энергию. Цикл TCA подобен двигателю, который приводит в движение автомобили. Каждая клетка нашего тела производит энергию.
Глутамат
Бульон комбу, используемый в японской кулинарии, содержит глутамат. Глутамат является основой умами, а свободный глутамат содержится в комбу, помидорах и сыре. Внутри организма глутамат используется как важный источник незаменимых аминокислот.
Аргинин
Аргинин играет важную роль в открытии вен для улучшения кровотока. Оксид азота, открывающий вены, сделан из аргинина. Аргинин — полезная аминокислота для удаления избытка аммиака из организма. Аргинин повышает иммунитет.
Аланин
Аланин поддерживает функцию печени. Аланин используется для производства глюкозы, необходимой организму. Аланин улучшает метаболизм алкоголя.
Proline
Пролин — одна из аминокислот, содержащихся в коллагене, который составляет ткань кожи.Пролин — одна из важнейших аминокислот естественного увлажняющего фактора (NMF), который сохраняет кожу влажной.
Цистеин
Цистеин уменьшает количество производимой черной пигментации меланина. Цистеин много в волосах на голове и теле. Цистеин увеличивает количество желтого меланина, производимого вместо черного меланина.
Аспарагин
Аминокислота, обнаруженная из спаржи. И аспарагин, и аспартат расположены близко к циклу трикарбоновой кислоты (TCA), который производит энергию.
Серин
Аминокислота, используемая для производства фосфолипидов и глицериновой кислоты.
Глицин
Незаменимая аминокислота, вырабатываемая в организме. В организме много глицина. Он действует как передатчик в центральной нервной системе и помогает регулировать такие функции организма, как движение и сенсорное восприятие. Глицин составляет одну треть коллагена.
Тирозин
Тирозин используется для получения многих типов полезных аминов. Тирозин относится к группе ароматических аминокислот вместе с фенилаланином и триптофаном.
Контент, который может вам понравиться
Что такое аминокислоты?
Аминокислоты — незаменимые соединения, общие для всех живых существ, от микробов до людей. Все живые тела содержат одни и те же 20 типов аминокислот. Что такое …
Факты об аминокислотах
Часто задаваемые вопросы об аминокислотахОбщие вопросы об аминокислотахВ чем разница между аминокислотой и пептидом? Белки состоят из сотен…
Базовый
Структура Гли к Leu Asp к Gln Ала к Трп Тест
себя Автор
односимвольные коды | The Химия аминокислот Введение Аминокислоты играют центральную роль как строительные блоки белков и как промежуточные звенья в метаболизме. 20 аминокислот, которые содержатся в белки обладают широким спектром химической универсальности. В точное содержание аминокислот и последовательность этих аминокислот конкретный белок, определяется последовательностью оснований в ген, кодирующий этот белок.Химические свойства аминокислот белков определяют биологическую активность белка. Белки не только катализируют все (или большую часть) реакций в живых клетках, они контролировать практически все клеточные процессы. Кроме того, белки содержат в их аминокислотных последовательностях необходимая информация для определения как этот белок сворачивается в трехмерную структуру, и устойчивость полученной конструкции.Поле сворачивания белка и стабильность была критически важной областью исследований в течение многих лет, и остается сегодня одной из величайших неразгаданных загадок. Однако это активно исследуются, и прогресс наблюдается каждый день. Когда мы узнаем об аминокислотах, важно помнить, что из наиболее важных причин для понимания структуры и свойств аминокислот уметь понимать структуру и свойства белка.Мы будем увидеть, что чрезвычайно сложные характеристики даже небольшого, относительно Простые белки — это совокупность свойств аминокислот, которые содержат белок. Верх 10 аминокислот, которые мы можем производить, это аланин, аспарагин, аспарагиновая кислота. кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин и тирозин. Тирозин вырабатывается из фенилаланина, поэтому при дефиците в рационе в фенилаланине также потребуется тирозин.Незаменимая аминокислота кислоты — аргинин (необходим молодым, но не взрослым), гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, и валин. Эти аминокислоты необходимы в рационе. Растения, конечно, должен уметь производить все аминокислоты. С другой стороны, люди делают не иметь всех ферментов, необходимых для биосинтеза всех аминокислоты. Зачем изучать эти структуры
и свойства? | Атомы
в аминокислотах |
Краткое руководство по двадцати распространенным аминокислотам — сложный процент
нажмите, чтобы увеличитьБелки, из которых состоят живые организмы, представляют собой огромные молекулы, но они состоят из более мелких строительных блоков, известных как аминокислоты.В природе насчитывается более 500 аминокислот, однако из них генетический код человека напрямую кодирует только 20. Каждый белок в вашем теле состоит из некоторой связанной комбинации этих аминокислот — на этом графике показана структура каждой, а также дать небольшую информацию об обозначениях, используемых для их представления.
В общих чертах, эти двадцать аминокислот можно разделить на две группы: незаменимые и несущественные. Незаменимые аминокислоты — это те аминокислоты, которые человеческий организм способен синтезировать, тогда как незаменимые аминокислоты должны быть получены с пищей.Незаменимые аминокислоты — это аланин, аргинин, аспарагин, аспартат, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин и тирозин; некоторые из них также можно назвать «условно незаменимыми», что означает, что они могут потребоваться из рациона во время болезни или в результате проблем со здоровьем. Эта подкатегория включает аргинин, глицин, цистеин, тирозин, пролин и глутамин. Незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.
Аминокислоты не могут храниться в организме так же, как жир и крахмал, поэтому важно, чтобы мы получали те, которые мы не можем синтезировать из своего рациона. Несоблюдение этого требования может привести к подавлению синтеза белка в организме, что может иметь широкий спектр последующих последствий для здоровья. Аминокислоты получаются в результате расщепления белка в рационе, поэтому диета с дефицитом белка может повлиять на потребление незаменимых аминокислот.
Поскольку белки, образованные аминокислотами, могут быть невероятно большими молекулами, потребуется очень много времени и сложно определить их химическую структуру так же, как мы делаем для более мелких молекул.По этой причине общие аминокислоты, из которых состоят белки, имеют коды, которые можно использовать для их представления, когда они встречаются в молекулах, чтобы упростить описание структуры белков. Существуют как трехбуквенные, так и однобуквенные коды; происхождение однобуквенных кодов было связано с требованием, еще когда компьютеры были старше и неуклюже, уменьшить размер файлов, используемых для описания последовательностей аминокислот, составляющих белки. Эти однобуквенные коды были разработаны доктором Маргарет Окли Дейхофф, которая считается пионером в области биоинформатики (с использованием программного обеспечения и информационных систем для хранения, организации и интерпретации биологических данных).
Хотя эта таблица показывает 20 аминокислот, которые непосредственно кодирует генетический код человека, были некоторые споры о том, следует ли другую аминокислоту классифицировать как 21-ю. Селеноцистеин — это аминокислота, которая содержится в небольшом количестве белков человека; Однако в отличие от 20, изображенного здесь, он кодируется не напрямую, а особым образом. Еще один, пирролизин, кодируется аналогичным образом и считается 22-й аминокислотой.
(Примечание: другой способ разделения аминокислот основан на их физических свойствах.Вы можете увидеть краткое изложение этого метода категоризации аминокислот здесь.)
Вы также можете загрузить версию рисунка, на котором показаны кодоны ДНК для каждой из аминокислот, а также структуры при физиологическом (физиологическом) pH.
Изображение в этой статье находится под лицензией Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. См. Рекомендации по использованию содержания сайта.
Ссылки и дополнительная литература
20 видов аминокислот
20 видов аминокислот сока2018-03-31T07: 50: 50 + 00: 00Существует двадцать видов аминокислот, поддерживающих организм, каждая из которых выполняет свои функции.Существует до ста тысяч видов белков, из которых состоит тело, и они состоят только из двадцати видов аминокислот в различных комбинациях. Эти двадцать аминокислот необходимы организму. Помимо того, что они являются материалами для белков, они при необходимости используются как источник энергии для организма. Кроме того, каждая аминокислота играет важную и уникальную роль в организме, как подробно описано ниже.
Чтобы узнать больше об аминокислотах, нажмите здесь
Валин, лейцин и изолейцин
- Все эти 3 аминокислоты называются аминокислотами с разветвленной цепью (BCAA).
- Они выполняют важные функции по увеличению количества белков и служат источником энергии во время упражнений.
- BCAA — это аминокислоты, в основном присутствующие в миопротеинах.
Аланин
- Важная аминокислота, поскольку она является источником энергии для печени.
- Одна из аминокислот, наиболее легко используемых в качестве источника энергии.
- Сообщается об улучшении метаболизма алкоголя.
- Используется как материал для синтеза глюкозы (сахара в крови), необходимой организму.
- Важен для здоровья печени.
В начало
Аргинин
- Аминокислота, необходимая для поддержания нормального функционирования кровеносных сосудов и других органов.
- Играет важную роль в расширении кровеносных сосудов для облегчения кровотока.
- Оксид азота, который необходим для расширения кровеносных сосудов, производится из аргинина.
- Аминокислота, которая выводит из организма избыток аммиака.
- Сообщается об усилении иммунологической функции.
- Аргинин обладает различными функциями, которые организм использует при необходимости; например, когда кровоток недостаточен во время упражнений; или когда повышается содержание аммиака, вызывающего усталость вещества; или когда сопротивление тела может снизиться.
Глютамин
- Аминокислота, необходимая для поддержания нормальных функций желудочно-кишечного тракта и мышц.
- Одна из аминокислот, наиболее широко содержащихся в организме.
- Играет роль в защите желудка и кишечника.
- Используется в качестве источника энергии, в частности, для кишечного тракта.
- Сообщается, что защищает печень и увеличивает метаболизм алкоголя.
- Необходим для здоровья печени
- Глютамин используется в качестве источника энергии для кишечника и является незаменимым компонентом для поддержания его нормальной функции. Эта аминокислота также используется для улучшения функции печени.
В начало
Лизин
- Это типичная незаменимая аминокислота.
- Как правило, недостаточен, когда мы придерживаемся диеты, основанной на хлебе или рисе.
- Дефицит муки и шлифованного риса.
- В муке больше всего отсутствует лизин, особенно по сравнению с идеальным аминокислотным составом.
- Дефицитную аминокислоту следует дополнить для повышения питательной ценности.
- Проект Университета Организации Объединенных Наций показал, что лизин, как правило, испытывает дефицит в развивающихся странах, где люди зависят от муки как источника белка.
- Недостаток аминокислот, таких как лизин, может привести к задержке роста.
Аспарагиновая кислота
- В большом количестве содержится в спарже.
- Аминокислота, которую легче всего использовать в качестве источника энергии.
- Может использоваться в качестве ингредиента в питательных препаратах.
- Аспарагиновая кислота — это аминокислота, которая находится ближе всего к циклу TCA, месту производства энергии.
- Цикл TCA можно сравнить с двигателем автомобиля.На основе этого механизма каждая клетка нашего тела вырабатывает энергию.
В начало
Глутаминовая кислота
- Глутаминовую кислоту часто называют глутаматом.
- В больших количествах содержится в пшенице и сое.
- Аминокислота, которую легче всего использовать в качестве источника энергии.
- Важный вкусовой компонент японского бульона. Он содержится в различных натуральных продуктах.
- Сообщается об ускорении раннего восстановления после усталости во время упражнений.
Proline
- Главный компонент «коллагена», из которого состоит кожа и другие ткани.
- Служит быстродействующим источником энергии.
- Пролин — важнейшая аминокислота как естественный увлажняющий фактор, который увлажняет кожу
.
В начало
Цистеин
- Цистеин легко восполняется у младенцев.
- Синтезируется из метионина в организме человека.
- У младенцев способность этой активности синтеза цистеина недостаточна.
Треонин
- Незаменимая аминокислота, которая используется для образования активных центров ферментов.
Метионин
- Незаменимая аминокислота, которая используется для производства различных веществ, необходимых организму.
К началу
Гистидин
- Незаменимая аминокислота, которая используется для производства гистамина и других веществ.
Фенилаланин
- Незаменимая аминокислота, которая используется для производства различных полезных аминов.
Тирозин
- Используется для производства различных полезных аминов и иногда называется ароматической аминокислотой вместе с фенилаланином и триптофаном.
В начало
Триптофан
- Незаменимая аминокислота, которая используется для производства различных полезных аминов.
Аспарагин
- Это аминокислота, которая находится рядом с циклом TCA (место выработки энергии) вместе с аспарагиновой кислотой.
Глицин
- Используется для производства глутатиона и порфирина, компонента гемоглобина.
В начало
Серин
- Используется для производства фосфолипидов и глицериновой кислоты.
2.25 типов аминокислот
Наш организм использует 20 аминокислот для синтеза белков. Эти аминокислоты можно разделить на незаменимые, несущественные или условно незаменимые. В таблице ниже показано, как классифицируются 20 аминокислот.
Таблица 2.251 Незаменимые, условно незаменимые и заменимые аминокислоты 1
Essential | Условно необходимые | Несущественные |
Гистидин | Аргинин | Аланин |
Изолейцин | Цистеин | Аспарагин |
лейцин | Глютамин | Аспарагиновая кислота или аспартат |
Лизин | Глицин | Глутаминовая кислота или глутамат |
метионин | Пролин | Серин |
фенилаланин | Тирозин | |
Треонин | ||
Триптофан | ||
Валин |
Организм не может синтезировать девять аминокислот.Таким образом, очень важно, чтобы они использовались в рационе. В результате эти аминокислоты известны как незаменимые или незаменимые аминокислоты. В качестве примера того, как аминокислоты были определены как незаменимые, д-р Уильям К. Роуз из Университета Иллинойса обнаружил, что треонин был необходим, давая студентам-выпускникам университета различные диеты, как описано в следующей ссылке.
Незаменимые или незаменимые аминокислоты могут вырабатываться в нашем организме, поэтому нам не нужно их потреблять.Условно незаменимые аминокислоты становятся незаменимыми для людей в определенных ситуациях. Примером состояния, при котором аминокислота становится незаменимой, является болезнь фенилкетонурия (PKU). Люди с PKU имеют мутацию фермента фенилаланингидроксилазы, который обычно добавляет спиртовую группу (OH) к аминокислоте фенилаланину с образованием тирозина, как показано ниже.
Рис. 2.251 Фенилкетонурия (PKU) возникает в результате мутации фермента фенилаланингидроксилазы 2,3
Поскольку люди с фенилкетонурией не могут синтезировать тирозин, он становится для них незаменимым.Таким образом, тирозин является условно незаменимой аминокислотой. Люди с фенилкетонурией должны придерживаться диеты с очень низким содержанием белка и избегать альтернативного подсластителя аспартама, поскольку он может расщепляться на фенилаланин. Если люди с фенилкетонурией потребляют слишком много фенилаланина, фенилаланин и его метаболиты могут накапливаться и вызывать повреждение мозга и серьезную умственную отсталость. Препарат Куван был одобрен для применения у пациентов с фенилкетонурией в 2007 году с низким уровнем активности фенилаланингидроксилазы. Вы можете узнать больше об этом препарате, перейдя по ссылке ниже.
Источники и ссылки
1. Аноним. Нормы потребления энергии, углеводов, клетчатки, жиров, жирных кислот, холестерина, белков и аминокислот (макроэлементов) с пищей. Белок и аминокислоты. Институт медицины, пищевых продуктов и питания. 2005 г. http://books.nap.edu/openbook.php?record_id=10490&page=589
2. https://en.wikipedia.org/wiki/Phenylalanine#/media/File:L-Phenylalanin_-_L-Phenylalanine.