Заменимые аминокислоты для человека: Заменимые и незаменимые аминокислоты — Лечебно-диагностический центр Нейрон (Таганрог)

Содержание

Заменимые и незаменимые аминокислоты — Лечебно-диагностический центр Нейрон (Таганрог)

Подробности
Автор: ЛДЦ Нейрон
Опубликовано: 10 Ноябрь 2015

Для нормальной работы и жизнедеятельности наш организм должен регулярно пополнять запасы витаминов, минералов и питательных веществ, которые отвечают за работу внутренних органов и протекание различных внутренних процессов. В число важнейших веществ, в которых нуждается каждый из нас, входят аминокислоты. Они представляют собой органические соединения, способствующие образованию белковых молекул, являющихся основой мышечных тканей и отвечающих за обменные процессы в организме. 

 

По значимости и количеству в организме человека аминокислоты занимают второе место после воды, поэтому не стоит их недооценивать. Чтобы избежать нежелательных последствий, необходимо регулярно пополнять запасы аминокислот в организме и способствовать их выработке, в зависимости от вида.

Виды аминокислот

Все известные на сегодняшний день аминокислоты можно разделить на два основных вида: заменимые и незаменимые. Как вы уже, наверняка, догадались, незаменимые аминокислоты – это те вещества, которые не могут синтезироваться организмом самостоятельно и не заменяются никакими другими веществами. Именно поэтому стоит позаботиться о том, чтобы они регулярно попадали в организм с продуктами питания. Что же касается заменимых аминокислот, то они могут быть получены в результате синтеза других питательных веществ во время протекания внутренних процессов. Поэтому их употребление в чистом виде не обязательно. Однако, и те, и другие аминокислоты имеют одинаково важное значение для организма, поэтому нельзя отдавать предпочтение какому-либо одному из видов.

Заменимые аминокислоты

Как уже было сказано ранее, заменимые аминокислоты синтезируются организмом в процессе метаболизма, извлекаясь в достаточном количестве из других органических веществ. При возникновении необходимости, то есть при истощении запасов аминокислот, организм автоматически переключается в режим создания нужной аминокислоты. К заменимым аминокислотам относятся аргинин, аланин, глютамин, глицин, тирозин, пролин, аспарагин, серин и цистеин. Рассмотрим подробнее некоторые из них и их влияние на наш организм.

Аланин

Данная аминокислота вырабатывается организмом в результате попадания в него мяса, молочных продуктов, рыбы, птицы, яиц и некоторых продуктов растительного происхождения, таких как авокадо. Аланин представляет собой великолепный источник энергии, который обеспечивает организм силой на длительный период. Он способствует ускорению процесса переработки и усвоения глюкозы и выведению токсинов из печени. Помимо этого аланин предотвращает распад мышечных тканей, который протекает особо интенсивно во время физической нагрузки. В некоторых случаях аланин выступает в роли профилактического средства при увеличении предстательной железы.

Аргинин

Такая аминокислота, как аргинин, имеет весьма большое значение для человека и считается одной из важнейших в организме. Она принимает участие в поддержании здоровья суставов, мышц, кожи и печени. Она обладает восстановительными свойствами, поэтому часто способствует регенерации тканей при артрите и других заболеваниях суставов. Аргинин принимает непосредственное участие в процессе укрепления иммунной системы, участвует в синтезе креатина, а также снижает количество жировых отложений, что будет весьма кстати для тех, кто занимается спортом с целью похудения. Несмотря на то, что аргинин вырабатывается организмом, людям с ожогами на коже и тем, кто хочет стремительно набрать мышечную массу рекомендуется дополнительно принимать данную аминокислоту в виде пищевой добавки. Природными источниками аргинина являются молочные продукты, мясо, шоколад, некоторые орехи, овёс и пшеница.

Глютамин

Получить это заменимую аминокислоту можно из многих продуктов, а в особенности из зелени. Однако, стоит учитывать, что глютамин быстро разрушается при термической обработке, поэтому его источники лучше употреблять в сыром виде. Данная аминокислота принимает участие в создании мышц и поддержании их состояния. Она выступает в качестве источника питания для головного мозга, а также представляет собой источник энергии для нервной системы, нормализуя её состояние и снимая напряжение. Кроме этого, глютамин способен выводить из печени токсические вещества, предотвращать нежелательный распад мышечных тканей, укреплять иммунную систему и помогать при артрите и хронической усталости. Одним словом, эта заменимая аминокислота обязательно должна присутствовать в рационе тех, кто беспокоится о своём здоровье.

Незаменимые аминокислоты

Незаменимые, или как их ещё называют, эссенциальные аминокислоты не могут синтезироваться нашим организмом, поэтому практически единственным их источником являются продукты питания, которые мы употребляем ежедневно. В случае нехватки этих аминокислот, организм потребляет их из мышечных тканей, что негативно отражается на состоянии мышц. В число незаменимых аминокислот входят лейцин, изолейцин, лизин, метионин, гистидин, валин, треонин и триптофан.

Лейцин

Эта аминокислота относится к классу ВСАА, так как имеет разветвлённую цепочку и играет весьма важную роль в процессе восстановления мышц, благодаря чему невероятно популярна среди людей, регулярно занимающихся спортом. Лейцин гораздо быстрее других незаменимых аминокислот превращается в глюкозу, благодаря чему способствует остановке в мышечных тканях катаболических процессов, происходящих во время изнурительных тренировок. Помимо этого, лейцин контролирует уровень сахара в крови, увеличивает выработку гормона роста, а также способствует сжиганию жиров, что непременно порадует тех, кто приобщился к спорту с целью похудения. Источниками лейцина являются мясо, орехи, бобовые культуры, рис, цельная пшеница и соевая мука.

Изолейцин

Изолейцин, как и предыдущая аминокислота, является одной из главных аминокислот ВСАА, которые часто используются в профессиональном бодибилдинге. Регулярное употребление изолейцина способствует увеличению выносливости и продуктивности тренировок, ускоряет восстановление и рост мышечной массы, стимулирует пополнение запасов энергии естественным путём, исключая разрушение мышц. Благодаря изолейцину можно в кротчайшие сроки улучшить свои спортивные результаты и добиться желаемых форм. Получить эту незаменимую аминокислоту можно из мяса, рыбы, орехов, яиц, гороха, сои и семян.

Лизин

Данная аминокислота часто добавляется в спортивное питание, так как основная её функция – это укрепление иммунитета, который ослабевает при недостатке питательных веществ и чрезмерных нагрузках на организм. Лизин обладает противовирусным свойством, он регулирует процессы обновления костной ткани, предупреждает развитие простудных заболеваний, а также стимулирует выработку коллагена и мышечного протеина, которые способствуют быстрому восстановлению организма и мышц в частности. Для того, чтобы пополнить запасы лизина, необходимо употреблять красное мясо, рыбу, молоко, яйца, сыр, картофель и дрожжи.

Метионин

В число незаменимых аминокислот, которые необходим нашему организму, входит метионин, обладающий уникальными свойствами. Он принимает участие в переработке и утилизации жиров, поэтому часто помогает во время похудения и пользуется спросом у тех, кто желает избавиться от лишнего веса. Эта аминокислота участвует в процессе образования таурина и цистеина, которые, в свою очередь, выводят из организма токсические вещества, очищая и обновляя его. При помощи метионина осуществляется синтез креатина, повышающего работоспособность и выносливость. Без него невозможен синтез коллагена, отвечающего за эластичность и упругость кожи, а также за здоровье ногтей. Метионин должен стать неотъемлемой частью рациона для людей, страдающих артритом и аллергией. Получить его можно из мяса, рыбы, бобовых культур, лука, чеснока и сои.

лдц «Нейрон»

Добавить комментарий

Аминокислоты для здоровья | Гомельский областной ЦГЭ и ОЗ

 

В природе существует более 500 различных аминокислот, из них всего 20 входят в состав белка. Аминокислотами называют гетерофункциональные соединения, содержащие одновременно амино- и карбоксильную группы в составе одной молекулы. Они хорошо растворимы в воде и нерастворимы в органических растворителях.

Аминокислоты участвуют во всех жизненных процессах. Это те самые кирпичики из которых состоит белок. В человеческом теле практически все органы состоят из белков – это и мышцы, и различные соединительные ткани, внутренние органы, железы, ногти, волосы, кожа, кости и жидкости. Некоторые белки содержат все незаменимые аминокислоты в количестве, достаточном для организма человека и животных. Такие белки называются биологически полноценными.

Организм синтезирует аминокислоты самостоятельно. Но есть целая группа аминокислот, которых организм сам синтезировать не может. Эти аминокислоты являются незаменимыми. Всего насчитывается 8 незаменимых аминокислот: лейцин, валин, изолейцин, лизин, фенилаланин, треонин, метионин и триптофан. Такие аминокислоты должны поступать в организм извне. В случае отсутствия или недостатка в рационе питания незаменимых аминокислот в организме нарушается белковый синтез.

Условно-незаменимые аминокислоты

синтезируются в организме в небольшом количестве. Этого недостаточно для здорового функционирования организма, поэтому они должны дополнительно поступать либо с пищей, либо с пищевыми добавками. К этой группе относятся аргинин и гистидин.

Аргинин – аминокислота, которая вырабатывается организмом здорового взрослого человека самостоятельно, но у младенцев и пожилых людей синтез этого вещества существенно снижен. Аргинин выступает стимулятором роста у детей и подростков, а также может быть показан при беременности при малом весе плода. Основная функция аргинина состоит в его способности повышать уровень оксида азота, т.е. он обеспечивает гибкость сосудов, поддерживает их тонус, улучшает циркуляцию крови, что приводит к лучшему снабжению тканей и органов (орехи, особенно арахис и кедровые орехи, тыквенные и кунжутные семечки, немного меньше его в рыбе, птице, в мясных и молочных продуктах).

Гистидин способствует восстановлению поврежденных тканей, образованию лейкоцитов и эритроцитов, строительству миелиновых оболочек клеток. Эта аминокислота необходима в период с рождения до двадцати одного года, а также в периоды восстановления после перенесенных тяжелых заболеваний и травм. Дефицит гистидина может спровоцировать проблемы со слухом, а избыток – развитие неврозов и даже психозов (орехи, семечки, бананы, сухофрукты, бобовые, молочные продукты (особенно сыр), рыба (особенно лосось и тунец), мясе домашней птицы, говядине (филе), свинине (вырезка).

В отдельную группу выделяют условно-заменимые аминокислоты – цистеин и тирозин, их синтез осуществляется при наличии незаменимых аминокислот. При недостатке предшественников эти аминокислоты могут стать незаменимыми.

Цистеин в организме производится из незаменимой аминокислоты метионин и при его недостатке также может стать незаменимой аминокислотой. Цистеин необходим организму для производства таурина, который регулирует работу нервной системы, и глутатиона, отвечающего за иммунную систему организма. Цистеин входит в состав коллагена, кератина, инсулина, при необходимости может трансформироваться в глюкозу, наполняя организм энергией, регулирует давление, снижает холестерин в крови, выводит из организма токсические вещества.

Тирозин вырабатывается в здоровом организме из незаменимой аминокислоты фенилаланин. Он регулирует синтез гормонов щитовидной железы, надпочечников, гипофиза. Улучшает мыслительные процессы, памяти, помогает противостоять стрессовым ситуациям, а также поддерживает хорошее настроение. Отвечает за выработку пигмента меланина, благодаря которому мы имеет тот или иной цвет волос, кожи. Для спортсменов важно также, что тирозин участвуя в синтезе белка, способствует росту мышечных тканей, ускоряет восстановление после тяжелой физической нагрузки.

Незаменимые аминокислоты

АминокислотаЗначениеСодержание
Лейцинвыработка инсулина, строительный материал для белка мышцсоевый белок, молочный белок – казеин и сывороточный белок.
Изолейцинв меньшей степени активирует рост мышечной ткани, в большей снабжает их глюкозой, участвует в синтезе гемоглобина, для усвоение изолейцина и лейцина необходим биотин (витамин B7)миндаль, кешью, куриное мясо, нут, яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, сои.
Метиониннеобходим для выработки и таурина, для синтеза креатина, коллагена, участвует в синтезе серотонина, а также способствует выработке адреналина. помогает печени в переработке жиров, выведению тяжелых металлов, метионин снижает уровень гистамина в кровибразильские орехи, говядина, свинина, курица, кролик, морская рыба, бобовые, яйцах, творог, молоко, кефир, сыр твердых сортов
Фенилаланинтирозин вырабатывается только из фенилаланина, образует дофамин и другие катехоламины, снижает депрессивные симптомы, продукты метаболизма фенилаланина обладают токсическим эффектом и при значительном избытке этой аминокислоты возможно негативное влияние на нервную системубелки сои, сыр твердых сортов, орехи и семена растений, мясо (говядина, птица) и рыба (тунец), яйца, молочные продукты, фасоль и зерновые культуры
Триптофантриптофан (точнее примерно 1 % от общего количества, поступающего с пищей) перерабатывается в серотонин, часть которого преобразуется в мелатонин (гормон сна). При недостатке сокращается синтез белков и ниацина (витамин B3), как следствие может развиться пеллагра. Серотонин способен повышать болевой порог и снимать состояния тревожности, беспокойства, а мелатонин понижает интенсивность многих физиологических процессов и способствует наступлению глубокого и спокойного сна.икра (красная и черная), голландский сыр, арахис и другие орехи, соевые бобы и другие бобовые (фасоль, горох), мясо курицы, кролика и индейки, кальмары, ставрида, сельдь, лосось и треска, а также куриные яйца, творог (и другие молочные продукты) и шоколад.
Треониннеобходим для синтеза серина и глицина, треонин входит в состав зубной эмали, избыток приводит к накоплению мочевой кислотымясо, птица, яйца, сыр, жирная морская рыба, морепродукты, грибах, чечевица, фасоль, пшеница, рожь, гречка, орехи.
Лизинсинтез почти всех видов белков, он выполняет важнейшие функции в организме – в частности, обеспечивает работу иммунной системы, составляя существенную часть коллагена, поддерживает необходимый баланс азота, участвует в усвоении кальция в пищеварительном тракте, без лизина невозможен синтез многих гормонов, ферментовбобовые, куриц, сом говядина, молоко и молочные продукты, яйца, семечки и орехи
Валинучаствует в синтезе белка, защищает миелиновые оболочки нервных волокон, улучшает нервные процессы, участвует в азотистом обмене, защищает миелиновые оболочки нервных волокон, препятствует снижению уровня серотонина, участвует в азотистом обмене.яйца, сыр, икра красная, соя (зерно), чечевица, арахис, горбуша, фисташки, молоко сухое.

Толкачёва Екатерина Александровна,
отдел общественного здоровья государственного учреждения
«Гомельский областной центр гигиены, эпидемиологии и общественного здоровья»

Незаменимые есть: ученые заставили клетки давать ценные аминокислоты | Статьи

Специалисты Курчатовского геномного центра создали микроорганизмы, способные производить так называемые незаменимые аминокислоты в большом количестве. Эти вещества не образуются в организме человека и животных, но нормальная жизнедеятельность без них невозможна. Для разработки ученые применили технологию редактирования генома. В 2020 году мировой рынок незаменимых аминокислот достиг $20 млрд. Благодаря достижениям наших исследователей Россия сможет побороться на нем за ведущие позиции.

Производство незаменимых

В Курчатовском геномном центре (НИЦ «Курчатовский институт» — ГосНИИгенетика) ведут работы по созданию микроорганизмов, которые смогут в большом количестве производить незаменимые аминокислоты. Особенность этих веществ в том, что организм не может их синтезировать, они поступают в него только с пищей. В сельском хозяйстве это — важнейшие составляющие кормов.

— Если незаменимые аминокислоты содержатся в недостаточном количестве в пище, то у человека нарушается нормальное развитие, а сельскохозяйственные животные медленно набирают вес, потребляя большое количество корма, — пояснил заместитель директора НИЦ «Курчатовский институт» Александр Яненко.

Специалисты уже подготовили инструментарий для направленной модификации продуцентов клеточных метаболитов в различных бактериях, включая коринебактерии, бациллы и другие простейшие организмы. В руках ученых специальные ферменты — «молекулярные ножницы», с помощью которых редактируют геномы для получения нужных штаммов. Кроме этого, чтобы направленно изменять геном (ДНК) клетки, нужно знать ее полные нуклеотидные последовательности, поэтому специалисты Курчатовского института проводят массовое полногеномное секвенирование микроорганизмов (полная расшифровка их генома). Сегодня прочитано уже больше 1 тыс.

Перехитрить бактерию

В обычных условиях в клетках микроорганизма содержится не более 0,2–0,5 г аминокислоты на литр питательной среды. Для промышленного производства нужно, чтобы клетка продуцировала не менее 100 г на 1 л. Такое количество аминокислоты выделяется в среднем за 40–50 ч.

Задача ученых — так изменить метаболизм микроорганизма, чтобы он направил все силы на генерацию нужных веществ. Уже сегодня ученым Курчатовского геномного центра удалось усилить в 100 раз продукцию микроорганизмами лизина, треонина и валина, а в ближайшее время они планируют добиться таких же результатов и для триптофана.

Справка «Известий»

Валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин относятся к незаменимым аминокислотам. Эти вещества не синтезируются клетками человека и животных, поэтому должны обязательно содержаться в нужном количестве в их пище. Незаменимые аминокислоты принимают активное участие в синтезе белков и других важных для организма соединений. Они необходимы для нормального роста и синтеза тканей тела, служат источником энергии в мышечных клетках. Нехватка этих веществ может приводить к быстрой утомляемости, усталости, слабости и иным нарушениям. В природе незаменимые аминокислоты синтезируют микроорганизмы, растения и грибы.

Раньше для получения микроорганизмов с нужными свойствами использовалась генная инженерия: в клетку встраивали чужеродные гены, чтобы получить больше нужной продукции. Но безопасность использования генно-модифицированных организмов вызывает слишком много вопросов, поэтому ученые разработали альтернативный метод геномного редактирования.

При таком подходе для модификации генов микроорганизма ученые используют механизмы, которые в норме существуют в клетке. В природных условиях гены изменяются, теряются или переходят с места на место. Эти процессы не выходят за рамки естественной клеточной изменчивости. То же самое ученые делают и при редактировании генов.

Из тысячи клеточных метаболитов они активируют один, который в результате начинает работать в 100 раз активнее. Клетка препятствует этому сверхсинтезу и стремится исправить дисбаланс. Она отключает синтез этого вещества на уровне взаимодействия белков с ДНК. Поэтому, чтобы «обмануть» клетку, ученые корректируют механизмы ее регуляции, меняя последовательности или даже удаляя некоторые гены. Только так можно получить штамм с нужным уровнем продуктивности.

Не так давно ученые Курчатовского геномного центра проанализировали штаммы, которые были разработаны в 1970–1980-х годах для производства незаменимой аминокислоты валина. Тогда не существовало методов направленного изменения генома. Микроорганизмы просто обрабатывали веществами (мутагенами), которые повышали частоту образования мутаций. Сегодня удалось обнаружить конкретные мутации, отвечающие за выработку валина. Их успешно ввели в геном штамма-суперпродуцента.

— В 2020 году мировой рынок незаменимых аминокислот составил около $20 млрд. Благодаря достижениям наших ученых Россия сможет обеспечить незаменимыми аминокислотами собственное животноводство, а также побороться за ведущие позиции на этом рынке, — считает Александр Яненко.

На верном пути

Прочесть геномы более 1 тыс. микроорганизмов — уже значительный научный результат, уверен директор научного центра «RASA-Политех» Санкт-Петербургского политехнического университета Петра Великого (вуз — участник проекта повышения конкурентоспособности образования «5-100») Игорь Радченко.

— Обычно генетическая информация многомерна: один и тот же ген может одновременно влиять на несколько, казалось бы, независимых функций организма. Поэтому специалисты из Курчатовского института пошли по верному пути, взяв для модификации одноклеточные микроорганизмы, — отметил эксперт.

На примере единичных клеток легко увидеть результаты редактирования, полагает ученый. Кроме того, в процессе исследования можно отделить клетки, где процесс происходит удачно. Таким образом создается колония отредактированных клеток, которая продолжает делиться и развиваться. И все клетки-потомки несут именно те генетические изменения, которые были заложены изначально, добавил Игорь Радченко.

— Во всем мире проводят работы, направленные на получение эффективных штаммов-продуцентов. Безусловно, применение этих технологий в России имеет огромное значение как для развития отечественной промышленности, так и сельского хозяйства, — сказала доцент Исследовательской школы химических и биомедицинских технологий Томского политехнического университета Александра Першина.

Разработки в данной области довольно быстро коммерциализируются, добавила она.

Что такое незаменимые аминокислоты, как пополнить их запас в организме?

Что такое незаменимые аминокислоты, как пополнить их запас в организме?

Организм человека не может функционировать без аминокислот. Некоторые из них он вырабатывает самостоятельно – заменимые и условно заменимые. А некоторые получает исключительно с пищей. Рассказываем, что такое незаменимые аминокислоты, и как пополнить их запас в организме.

Аминокислоты — важное строительное «сырье» в организме человека. Все аминокислоты делятся на 3 группы: заменимые, условно заменимые и незаменимые. Классификация зависит от возможности организма самостоятельно производить эти вещества. Те, которые самостоятельно не вырабатываются, играют большую роль в образовании гормонов, строительстве белковых цепей.

Группа незаменимых аминокислот

Это соединения, которые состоят из углерода, водорода, кислорода и азота. Из общего количества только 9 структурных частей белка считаются незаменимыми. Это вещества, которые не могут синтезироваться организмом, а человек получает их исключительно из пищи.


К незаменимым аминокислотам относятся:

  • изолейцин;
  • лизин;
  • лейцин;
  • гистидин;
  • триптофан;
  • фенилаланин;
  • валин;
  • треонин;
  • метионин.
Внимание! Каждая из известных кислот является необходимой для слаженной работы всех систем. Рацион должен быть сбалансирован и содержать все вещества. Они обеспечивают полноценную здоровую жизнь, сохраняют молодость и крепость мышц.

Для чего нужны?

Без незаменимых аминокислот не проходит ни один процесс в организме. К основным из них относятся:

  • ответственность за структуру и функционирование белка;
  • стимулирование роста мышц и ответственность за их восстановление;
  • участие в нормальном метаболизме;
  • включение в состав коллагена и эластина;
  • регулирование аппетита, сна и настроения;
  • помощь в формировании защитной оболочки вокруг нервных клеток.

Поэтому регулярное и достаточное поступление аминокислот данной группы является обязательным.

Симптомы дефицита

Если с пищей не поступает нормы незаменимых аминокислот, то возникает дефицит данных веществ. Его симптомы:

  • постоянное чувство усталости и сонливости;
  • анемия, которая сопровождается головокружением и прочими характерными симптомами;
  • значительно ослабевает иммунитет;
  • начинают выпадать волосы.

При этом есть неприятности и при лишнем потреблении данных веществ. Могут начаться патологии щитовидной железы, нарушается работа суставов. Поэтому для употребления суточной нормы незаменимых аминокислот необходимо правильно сформировать рацион, а также проконсультироваться с диетологом.

Как восполнить недостаток

Для обеспечения организма незаменимыми аминокислотами, нужно соблюдать всего несколько правил разумного питания:

  • ежедневно в рационе должна присутствовать молочная и кисломолочная еда;
  • мясо и рыбу также нужно употреблять ежедневно, но готовить их лучше на пару, запекать или тушить, подавать с зеленью;
  • 50 грамм орешков и семян в сутки способствуют обогащению незаменимыми аминокислотами в любом возрасте;
  • следует есть бобовые продукты и зерновые с зеленью.

При регулярном соблюдении таких рекомендаций опасного дефицита незаменимых аминокислот не возникнет, а человек сохранит молодость и здоровье.

Внимание! Особенно важно пополнить рацион аминокислотами при регулярном посещении тренажерного зала или профессиональных занятиях спортом. Тогда расход аминокислот значительно увеличивается, а правильному питанию нужно уделить особое внимание. Оно будет способствовать не только восполнению запаса полезных элементов, но и естественному снижению веса и наращиванию мышечной массы.

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Пищевые аминокислоты — Компания НЕО Кемикал

Аминокислоты — основной элемент построениях всех белков. Они делятся на заменимые, незаменимые и условно незаменимые.
Незаменимые аминокислоты – те аминокислоты, которые не могут быть синтезированы в организме человека и должны поступать в организм с пищей.
Условно незаменимыми кислотами называются аминокислоты, которые синтезируются организмом человека при определенных условиях. Часто организм испытывает недостаток этих аминокислот.
К заменимым относятся аминокислоты, которые наш организм способен синтезировать самостоятельно.

ВСАА — это комплекс из трех незаменимых аминокислот: L-лейцин, L-изолейцин и L-валин, основной материал для построения новых мышц. Составляют 35% всех аминокислот в мышцах и принимают важное участие в процессах анаболизма и восстановления, обладают антикатаболическим действием. BCAA не могут синтезироваться в организме, поэтому получать человек их может только с пищей и специальными добавками. BCAA в первую очередь метаболируются в мышцах, их можно рассматривать как основное «топливо» для мышц, которое повышает спортивные показатели, улучшает состояние здоровья, к тому же они абсолютно безопасны.

L — Валин — Один из главных компонентов в росте и синтезе тканей тела. Вместе с лейцином и изолейцином служит источником энергии в мышечных клетках, а также препятствует снижению уровня серотонина. Также необходим для поддержания нормального обмена азота в организме, входит в состав практически всех известных белков, является незаменимой аминокислотой не синтезируется в организме человека и поэтому должен поступать с пищей. Входит в состав ВСАА.

L — Лейцин — Лейцин входит в состав природных белков, применяется для лечения болезней печени, анемий и других заболеваний. В среднем суточная потребность организма в лейцине для здорового человека составляет 4-6 грамм. Входит в состав ВСАА и многих БАД

L —  Изолейцин — это аминокислота входящая в состав всех природных белков. Является незаменимой аминокислотой, что означает, что изолейцин не может синтезироваться в организме человека и должен поступать в него с пищей. Участвует в энергетическом обмене..

L — Глутамин – одна из 20 стандартных аминокислот, входящих в состав белка. Самая распространенная аминокислота организма, мышцы состоят из неё на 60%. Широко используется в спортивном питании и при производстве БАД.

Креатин – Креатин чаще всего используется для повышения эффективности физических нагрузок и увеличения мышечной массы у спортсменов. Существуют научные исследования, поддерживающие использование креатина для улучшения спортивной активности молодых и здоровых людей во время кратковременной интенсивной активности и нагрузки

 

Новости Педиатрического университета

Ребёнок-веган  все «за» и «против»

 

Ребёнок-веган – распространенное явление XXI века. Веганством считается наиболее строгая форма вегетарианства. Она отличается тем, что затрагивает не только сферу питания. Людей, которые придерживаются веганского образа жизни только в еде, называют строгими вегетарианцами.

Сегодня, 1 ноября, в Международный веганский день мы поговорим о влиянии на детский организм именно рациона питания, исключающего продукты животного происхождения.

На актуальные вопросы отвечает доцент кафедры общей медицинской практики СПбГПМУ, врач-педиатр высшей категорий, врач-диетолог клиники СПбГПМУ, Анна Никитична Завьялова .

 

Какой вопрос становится самым важным, когда речь идёт о рационе питания вегана или вегетарианца?

Бывают вегетарианцы, которые не пьют молоко, не едят мясо и рыбу в том числе, то есть употребляют только продукты растительного происхождения – веганы. Наш с вами организм – это восполняемая система и мы все должны получать белок извне, причём белок животного происхождения с определённым набором незаменимых аминокислот. Не хотите есть мясо, яйца, пить молоко – тогда вы должны восполнить незаменимые аминокислоты другим путем. Для взрослого человека необходимы 8 незаменимых аминокислот: валин, изолейцин, лейцин, метионин, треонин, триптофан, фенилаланин, лизин. Остальные аминокислоты относят к заменимым, но некоторые из них  лишь условно, поскольку заменимая аминокислота может синтезироваться в организме только из незаменимой.

То есть веган не может просто отказаться от продуктов животного происхождения, в таком случае у него должен быть тщательно продуманный полный сбалансированный рацион питания, основанный на растительной пище?

Сбалансированный по аминокислотному составу рацион из растительных продуктов и дотации незаменимыми аминокислотами (фармакологически).

Насколько полезно такое замещение для детского организма?

Для ребёнка это не полезно, а даже вредно, потому что ребёнок растёт.  Потребность в белке у детей разного возраста отличается, но тенденция к более высокой потребности, чем у взрослого однозначна. Ребёнок, подросток растёт. Рост костей, мышц, внутренних органов, всех тканей, в том числе и нервной ткани, головного мозга идёт за счёт поступления извне «строительного материала», в том числе и белков, богатых незаменимыми аминокислотами.  В каждом организме есть быстрорастущие ткани – слизистые оболочки желудочно-кишечного тракта, дыхательной системы, кожа, кровь, иммунная система, и нам необходим определённый аминокислотный состав белка. Ребёнок растёт, соответственно потребность в белке у него намного выше. 

Белковая пища, которую мы едим, бывает 4-х категорий:

1-я категория – белки молока и яиц. Они усваиваются на 95-96%. Их аминокислотный состав сбалансированный. Если мы берём младенчество, грудное молоко матери – это стопроцентное усвоение. В нём содержится тот аминокислотный состав, который необходим для роста и развития ребёнка. 

Белки 2-й категории – мясо, рыба, соя. Усвоение их идёт на 86-90%. Аминограмму* этих белков организм умеет выправлять за счёт собственных белковых ресурсов. 

3-я категория белков (усвоение — 64-68%) – это белки растительного происхождения (крупы, овощи, бобовые). Аминокислотный состав этих белков бедный, истощен пул незаменимых аминокислот.

И 4-я категория – у неё нулевая ценность (гемоглобин, желатин) – они не усваиваются вообще – пищевые наполнители.

То есть если ребёнок — веган, то для поддержания должного количества белка в организме он должен есть почти в два раза больше растительной пищи?

Объём потребляемой пищи будет больше, всё верно, но и растительная пища не восполнит потребности организма в незаменимых аминокислотах.

Насколько это полезно для детского организма?

Ничего хорошего в этом нет. Что касается объёма  объём желудка у детей разного возраста разный и этот объём растёт, постепенно, с возрастом, но он не бесконечен, согласны?

Трудно не согласиться.

Плюс к этому, аминограмма растительного белка – бедная по большому количеству незаменимых аминокислот. Если у взрослого человека незаменимых аминокислот не много (порядка 8), то у детей незаменимых аминокислот в два раза больше. Для того, чтобы расти и развиваться, ребёнку нужен белок животного происхождения. Он может его получить в виде искусственного белка (например, питательной смеси), грудного молока до определённого возраста или из мяса, яиц и молочных продуктов.

 

Никто не исключал того, что есть не очень здоровые дети с аллергией на белок коровьего молока или яйца, значит, эти продукты заменяются на другие с расчётом белка на килограмм массы тела. Дети с хронической болезнью почек, особенно в стадии, когда выделительная способность почки снижается, требуют особой диеты. В зависимости от скорости клубочковой фильтрации* определяется, сколько нужно белка на килограмм массы тела есть этому ребёнку. В данном случае мясные продукты или продукты с высоким содержанием белка (яйца, рыба) исключаются из рациона, но при этом ребёнку обязательно дают заменители в виде незаменимых аминокислот.

Допустим, родители ребёнка ведут веганский образ жизни, но, тем не менее, с какого возраста предпочтительно ребёнку переходить на питание, исключающее продукты животного происхождения? 

Конечно желательно всё-таки после 18 лет. Потому что любому организму особенно в подростковый период интенсивного роста, необходим незаменимый белок. И потом, все, кто растил детей-подростков, особенно мальчиков-подростков, прекрасно знают, что именно в этот период потребность и желание есть мясо – очень высоки (незаменимые аминокислоты). 

Тогда вытекающий из этого вопрос — как исключение продуктов животного происхождения это сказывается на внешнем виде и организме ребёнка в целом (кожа, волосы, зубы, ногти)?

По-разному. Еще раз говорю, есть больные дети, которым мы такие продукты целенаправленно убираем, у них печень и почки не метаболизируют достаточное количество белка. А если это выбор родителей, и ребёнок здоров, последствия могут быть неблагоприятными для его роста и развития. Нельзя дать стопроцентную гарантию. Может пройти всё нормально, не у всех таких детей происходит задержка роста или веса. Необходимо, чтобы диетолог хорошо рассчитал питание и правильно подобрал заменители мяса, чтобы они усваивались, должен быть контроль за железом и уровнем белка в сыворотке крови. 

Спасибо за ответы на основные вопросы, касающиеся питания ребёнка-вегана и влияния диеты, исключающей животные белки, на детский организм.

*Аминокислоты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот  это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот.

*Аминограмма  запись количественного содержания аминокислот в белке (в г на 16 г белкового азота).

*Скорость клубочковой фильтрации (СКФ) – это количество крови, фильтруемой каждую минуту через крошечные фильтры в почках, называемые клубочками.

Польза аминокислот для организма. Как восполнить баланс

Аминокислоты необходимые элементы для нормального функционирования организма. Благодаря наличию аминокислот происходит лучшее усвоение витаминов и минеральных веществ. Также при помощи аминокислот осуществляется деятельность нервной системы, в частности осуществляется передача сигналов к головному мозгу. Существуют определенные аминокислоты, действие которых направлено на восстановление мышечных клеток, что является очень важным для человеческого организма.

Все аминокислоты можно разделить на три типа: заменимые, незаменимые и полузаменимые.

Заменимые аминокислоты организм вырабатывает самостоятельно. Как правило, в здоровом организме их достаточное количество. А вот незаменимые аминокислоты организм может получить только извне.

Незаменимые аминокислоты способствуют похудению. Худеющий человек может включить в свой рацион специальные пищевые добавки, которые содержат аминокислоты. Благодаря таким добавкам процесс похудения пройдет гораздо быстрее. Объясняется это тем, что аминокислоты наращивают мышечную массу, ускоряя при этом расщепления массы жировой.

Наличие незаменимых аминокислот необходимо для нормального функционирования различных процессов в организме. При их нехватке человек становится аморфным, снижается активность, также начинается стремительный рост жировых тканей.

Получить незаменимые аминокислоты можно из различных продуктов: яйца, рыба, мясо. Самым богатым продуктом, содержащим незаменимые аминокислоты являются панты марала. Именно поэтому пантолечение так популярно в современном обществе.

К незаменимым аминокислотам относят следующие вещества:

  • Изолейцин и лейцин участвуют в синтезе белка, способствуют укреплению иммунитета.
  • Фенилаланин способствует выработке коллагена, а также норэпинерфина, за счет которого осуществляется передача нервных сигналов от органических тканей в головной мозг.
  • Валин улучшает регенерацию клеток, а также дает человеку возможность чувствовать себя в хорошем состоянии при резких перепадах температуры.
  • Метионин улучшает регенерацию клеток печени

Что такое аминокислоты? | Улучшение жизни с помощью аминокислот | О нас | Глобальный веб-сайт Ajinomoto Group

Аминокислоты — незаменимые соединения, общие для всех живых существ, от микробов до людей.
Все живые тела содержат одинаковые 20 типов аминокислот.

Какие аминокислоты актуальны в организме человека?

Аминокислоты составляют около 20% нашего тела или около 50% нашей твердой массы тела; они являются следующим по величине компонентом нашего тела после воды.В организме человека весом 50 кг содержится около 10 кг аминокислот.

Аминокислоты являются строительными блоками белков. Существует 100 000 типов белков, которые состоят всего из 20 аминокислот.

Двадцать типов аминокислот составляют белки человеческого тела.

Что такое незаменимые аминокислоты?

Из 20 аминокислот 9 аминокислот не могут быть синтезированы в нашем организме, и мы должны получать их с пищей.Это незаменимых или незаменимых аминокислот .
Незаменимые аминокислоты: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.

Что такое незаменимые аминокислоты?

11 оставшихся аминокислот могут быть синтезированы из других аминокислот в организме и, таким образом, называются несущественными (или незаменимыми) аминокислотами .
Незаменимые аминокислоты: аланин, аргинин, аспарагин, аспарагиновая кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин и тирозин.Однако как незаменимые, так и заменимые аминокислоты играют важную роль в поддержании нашей жизни.

Что такое условно незаменимые аминокислоты?

Некоторые заменимые аминокислоты (например, аргинин, цистеин и тирозин) называются полу-незаменимыми или условно незаменимыми аминокислотами , потому что они, как правило, истощаются в младенчестве или при таких состояниях здоровья, как болезнь, травма или после хирургия.

Подробнее о каждой аминокислоте здесь :

Какова роль аминокислот в организме человека?

Аминокислоты, которые соединяются вместе, чтобы образовать белки, не только составляют наш организм, но также регулируют большинство основных функций нашего тела.Некоторые распространенные примеры белков — коллаген, кератин, гемоглобин и т. Д.

Аминокислоты также регулируют и поддерживают наш организм, превращаясь в ферменты или гормоны. Некоторые общеизвестные гормоны: щитовидная железа, инсулин, адреналин и т. Д.

Еще одна важная функция аминокислот — снабжать организм энергией. Как правило, здоровое тело со средней диетой использует углеводы в качестве основного источника топлива, но белки и аминокислоты могут использоваться в качестве последнего средства, когда основные источники истощаются из-за строгих упражнений.

Аминокислоты также играют важную роль во вкусовых качествах пищи. Белки не имеют особого вкуса, но каждая аминокислота имеет свой вкус, и их сочетание является одним из важных факторов, определяющих вкус пищи. Наиболее известной аминокислотой является глутаминовая кислота, которая отвечает за пятый вкус умами, а также является сырьем для приправы умами AJI-NO-MOTO®.

Поскольку наш организм не может производить все аминокислоты, мы должны потреблять некоторые необходимые аминокислоты с пищей из различных продуктов.Сбалансированная диета с необходимыми аминокислотами очень важна для правильного функционирования организма.

Какова роль аминокислот в сбалансированном питании?

Сбалансированное питание важно для здорового образа жизни. Необходимо сбалансированно получать 5 основных питательных веществ (белки, жиры и углеводы, а также витамины и минералы). Требуемое суточное потребление этих питательных веществ установлено Всемирной организацией здравоохранения (ВОЗ) и во многих странах. Если этот баланс нарушен, например, при чрезмерном потреблении любого отдельного питательного вещества, увеличивается риск ожирения и заболеваний, связанных с образом жизни.

Точно так же требуемые количества 9 незаменимых аминокислот для нашего организма определены международными организациями (FAO / WHO / UNU). Это называется схемами оценки аминокислот. Если аминокислота меньше, чем в схеме оценки аминокислот, она называется ограничивающей аминокислотой. Пищевая ценность белка может быть улучшена путем добавления ограничивающей аминокислоты. Оценка аминокислот — это числовое значение, показывающее, насколько наименьшая ограничивающая аминокислота удовлетворяет схеме оценки.Можно сказать, что белок с оценкой аминокислот, близкой к 100, является белком хорошего качества.

В целом животные белки, такие как яйца, являются белками хорошего качества с высоким содержанием аминокислот. С другой стороны, известно, что количество растительных белков, таких как пшеница и кукуруза, низкое.

Понимание баланса аминокислот в белке с помощью теории барреля

Для здорового образа жизни очень важно придерживаться диеты с правильным балансом высококачественных белков; а именно незаменимые аминокислоты, которые организм не производит.Если аминокислоты попадают в организм в правильном балансе, организм может эффективно их использовать, и будет выводиться меньше отходов. Предлагается требуемая суточная доза каждой из девяти незаменимых аминокислот.

Баланс незаменимых аминокислот в пище часто изображают в виде деревянной бочки, которую используют для наполнения водой. Каждая доска ствола представляет каждый тип незаменимых аминокислот в пище. У корма с идеальным балансом аминокислот, такого как яйцо, есть бочонок, каждая доска которого аккуратно образует линию на одной высоте.Однако в случае пшеницы доски различаются по высоте. Если какая-либо из досок короче других, вы можете заполнить бочку только до самой нижней доски, и вода за ее пределами будет вытекать из бочки. Точно так же, если отсутствует хотя бы одна незаменимая аминокислота, остальные аминокислоты не могут быть использованы эффективно.

Итак, что произойдет, если аминокислоты лизина, которого недостаточно, добавят извне в бочку для пшеницы? Было обнаружено, что доска для лизина становится выше, что позволяет более эффективно использовать другие типы аминокислот.

Эта теория была использована для улучшения питания во многих странах с плохим питанием, способствуя решению социальных проблем. Например, многие страны Африки страдают от плохого развития младенцев из-за недостаточности питания, что приводит к высокому уровню смертности.

* Коко, каша из ферментированной кукурузы, является традиционным дополнительным блюдом в Гане. Однако уровень белка (аминокислотный баланс) в коко не соответствует требованиям ВОЗ в питательных веществах и диетическим рекомендациям.
Чтобы восполнить этот дефицит питательных веществ, Ajinomoto Group в сотрудничестве с различными партнерами разработала KOKO Plus, добавку, содержащую аминокислоты и соевые белки, которые при добавлении в коко во время приготовления пищи обеспечивают достаточное количество питательных веществ, таких как сбалансированный белок, а также кальций, железо. , Цинк, йод, фолиевая кислота, витамины A, B1, B2, B6, ниацин, K1, D3, B12 для детей. Всемирная продовольственная программа (WFP) проверила эффективность KOKO Plus и зарегистрировала его как «Питательный порошок» в своей продовольственной корзине в феврале 2018 года.

* Проект «Коко Плюс» в Гане был передан Фонду Аджиномото с 2017 г.

В нашем повседневном рационе продукты с высоким содержанием лизина включают молочные продукты, яйца, мясо, рыбу и бобы, тогда как рис содержит недостаточное количество лизина. Таким образом, идеально сочетать бобовые продукты, такие как мисо и тофу, с рисом, чтобы обеспечить потребление всех незаменимых аминокислот. Осознанное питание с учетом правильного баланса аминокислот очень важно для более здорового образа жизни.

Группа Ajinomoto поддерживает здоровый образ жизни людей во всем мире, раскрывая силу аминокислот.Узнайте больше о нашем подходе к питанию здесь.


Контент, который может вам понравиться

Аминокислоты для улучшения спортивных результатов

При правильном применении аминокислоты могут помочь в укреплении мышц и восстановлении, повысить выносливость и более эффективно наращивать мышечную массу. Идеально подходят для занятий спортом и …

Аминокислоты для здорового старения

Аминокислоты важны для борьбы с потерей мышечной массы из-за старения.С возрастом мы начинаем терять массу скелетных мышц. Этот естественный …

9 незаменимых аминокислот: что это такое и зачем они нам нужны?

Мы все слышали об аминокислотах, но что они собой представляют и почему они необходимы для нашего питания?

Аминокислоты — строительные блоки белка. Это органические соединения, содержащие аминогруппу (-Nh3) и карбоксигруппу (-COOH). Поскольку около двадцати процентов человеческого тела состоит из белков, аминокислоты составляют значительную часть наших клеток, мышц и тканей.

Аминокислоты являются неотъемлемой частью биологических процессов, происходящих в нашем организме, таких как придание клеткам их структуры, транспортировка и хранение питательных веществ, а также формирование наших органов, желез, артерий и мышц. Они также необходимы для заживления ран и восстановления тканей, особенно мышц, кожи, костей и волос.

Всего существует 23 протеиногенных (строящих белок) аминокислоты и более 100 природных аминокислот, которые не являются протеиногенными. Из протеиногенных аминокислот 9 незаменимы, 11 несущественных и 3 из которых не встречаются в организме человека.

Незаменимые аминокислоты не производятся организмом естественным путем, поэтому они должны быть получены из продуктов, которые мы едим. Девять незаменимых аминокислот: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Каждая из этих аминокислот обладает уникальными свойствами и играет важную роль в наших рабочих органах.

Незаменимые аминокислоты производятся в организме человека, поэтому они не являются необходимыми для нашего питания. Есть также три аминокислоты (селеноцистеин, пирролизин и N-формилметионин), которые не встречаются у людей, но являются нестандартными аминокислотами, строящими белок, которые содержатся в растениях и других организмах.

Аминокислоты с разветвленной цепью (BCAA) относятся к трем незаменимым аминокислотам: лейцину, изолейцину и валину. Это аминокислоты, которые имеют алифатические боковые цепи с разветвленной атомной структурой. Аминокислоты с разветвленной цепью составляют 35% незаменимых аминокислот в наших мышцах.

Так как же получить нужные аминокислоты и что именно они делают? Вот краткое описание каждой из этих мощных маленьких молекул.

9 незаменимых аминокислот

ЛЕЙЦИН

Лейцин помогает стимулировать мышечную силу и рост, а также помогает сохранить мышечную массу при соблюдении диеты.Лейцин — основная аминокислота, непосредственно ответственная за активацию незаменимого соединения в мышцах, называемого mTOR (мишень рапамицина у млекопитающих), которое непосредственно отвечает за активацию синтеза белка. Лейцин является основным строительным материалом для мышц и помогает синтезировать больше. Лейцин также помогает регулировать уровень сахара в крови, снижая уровень инсулина в организме во время и после упражнений, и оказывает положительное влияние на наш мозг и нейротрансмиттеры.

Источники лейцина: сыр, соевые бобы, говядина, свинина, курица, тыква, семена, орехи, горох, тунец, морепродукты, бобы, сывороточный белок, растительные белки и т. Д.


ИЗОЛЕУЦИН

Изолейцин — это изолированная форма лейцина, которая помогает организму вырабатывать гемоглобин. Гемоглобин переносит железо в кровь и регулирует уровень сахара в крови, который сжигается для получения энергии в мышцах во время упражнений. Изолят сывороточного протеина от природы богат изолейцином.

Изолейцин также способствует росту азота в мышечных клетках, который составляет значительную часть нашей структуры и ДНК.

Источники изолейцина: соя, мясо и рыба, молочные продукты и яйца, кешью, миндаль, овес, чечевица, фасоль, коричневый рис, бобовые, семена чиа.

ЛИЗИН

Лизин — одна из основных аминокислот, которая отвечает за восстановление и рост мышц, а также повышает иммунную систему организма. Лизин также помогает усвоению других минералов в организме и необходим для синтеза коллагена, который является основным элементом, необходимым для образования соединительной ткани и костей в организме.

Источники лизина: яиц, мясо, птица, фасоль, горох, сыр, семена чиа, спирулина, петрушка, авокадо, миндаль, кешью, сывороточный протеин.



МЕТИОНИН

Метионин важен для роста новых кровеносных сосудов и роста мышц, и он содержит серу, которая является неотъемлемой частью здоровья тканей и мышц. Без достаточного количества серы в организме люди могут быть подвержены артриту, повреждению тканей и иметь проблемы с заживлением. Метионин также способствует росту мышц и образованию креатина, который необходим для получения энергии. Метионин также может растворять жир в организме и уменьшать жировые отложения в печени.

Источники метионина: мясо, рыба, сыр, молочные продукты, бобы, семена, семена чиа, бразильские орехи, овес, пшеница, инжир, цельнозерновой рис, фасоль, бобовые, лук и какао.

ФЕНИЛАЛАНИН

Фенилаланин превращается в организме в аминокислоту тирозин, которая необходима для выработки белков и химических веществ мозга, таких как адреналин, L-допа, норадреналин и гормоны щитовидной железы. Таким образом, фенилаланин оказывает большое влияние на наше настроение и психическое здоровье.

Источники фенилаланина: молоко и молочные продукты, мясо, рыба, курица, яйца, спирулина, водоросли, тыква, фасоль, рис, авокадо, миндаль, арахис, киноа, инжир, изюм, листовая зелень, большинство ягод, оливки и семена.

ТРЕОНИН

Треонин поддерживает функцию здоровья иммунной системы, печени, сердца и центральной нервной системы. Он также необходим для создания глицина и серина, аминокислот, необходимых для производства эластина, коллагена и мышечной ткани. Он необходим для здоровой работы мышц и помогает сохранять их сильными и эластичными. Треонин также помогает укрепить кости и может помочь ускорить заживление ран и повреждений тканей.

Источники треонина: нежирное мясо, сыр, орехи, семена, чечевица, кресс-салат и спирулина, тыква, листовая зелень, семена конопли, семена чиа, соевые бобы, миндаль, авокадо, инжир, изюм и киноа.

ТРИПТОФАН

Когда триптофан поглощается организмом, он в конечном итоге превращается в серотонин — химическое вещество, которое делает нас счастливыми, является нейромедиатором и помогает снизить уровень стресса и депрессии. Триптофан также известен тем, что оказывает расслабляющее действие на организм и способствует здоровому режиму сна, а также поддерживает функции мозга и нервной системы.

Источники триптофана: шоколад, молоко, сыр, индейка, красное мясо, йогурт, яйца, рыба, птица, нут, миндаль, семечки подсолнечника, пепитас, спирулина, бананы и арахис.

ВАЛИН

Валин необходим для оптимального роста и восстановления мышц. Он помогает снабжать мышцы дополнительной глюкозой, отвечающей за выработку энергии во время физической активности, что делает ее необходимой для выносливости и общего здоровья мышц. Он также помогает улучшить работу нервной системы и когнитивных функций, а также излечивает метаболические заболевания и заболевания печени.

Источники валина: сыр, красное мясо, курица, свинина, орехи, фасоль, шпинат, бобовые, брокколи, семена, семена чиа, цельнозерновые, инжир, авокадо, яблоки, черника, клюква, апельсины и абрикосы.


HISTIDINE

Гистидин поддерживает здоровье мозга и нейротрансмиттеров (в частности, нейромедиатор гистамин). Это также помогает детоксикации организма, производя красные и белые кровяные тельца, которые необходимы для общего здоровья и иммунитета. Гистидин может даже помочь защитить ткани от повреждений, вызванных радиацией или тяжелыми металлами.

Источники гистидина: красное мясо, сыр, белое мясо и птица, морепродукты, соя, фасоль, бобовые, семена чиа, гречка, картофель.


Лучший источник аминокислот?

На рынке есть много добавок, которые были произведены химическим способом. Сюда входит обычная синтезированная аминокислотная добавка, известная как BCAA. Это можно сделать с помощью химического синтеза или экстракции из источников белка. Синтезированные аминокислоты различаются по действию в зависимости от способа, которым они были созданы с помощью генной инженерии. Мы рекомендуем получать аминокислоты из натурального источника белка, а не из синтезированного заменителя.

Сывороточный протеин — один из немногих источников, которые естественным образом содержат все 20 аминокислот, что делает его полноценным протеином.

Смеси изолятов сывороточного протеина

Bare Blends имеют превосходный аминокислотный профиль и особенно неденатурированы. Они обеспечивают наш организм наиболее функциональным белком для восстановления, восстановления и наращивания мышц, а также повышают наш иммунитет.

Существуют также безмолочные протеиновые порошки, которые являются отличной альтернативой сывороточному протеину для тех, кто придерживается растительной диеты.Фактор удобства наших смесей веганского протеина или смесей сывороточного протеина очень важен — так как после тренировки важно сразу же подпитывать наш организм аминокислотами, чтобы они могли немедленно начать восстановление наших мышц.

Эти смеси также очень удобны для быстрого приготовления насыщенных питательными веществами смузи на завтрак, когда у вас нет времени ни на что другое. Смешивание порции WPI с молочным / ореховым молоком или жидкостью по вашему выбору с замороженными фруктами — это восхитительный здоровый завтрак, который поддержит вас и содержит белок и аминокислоты, необходимые вашему организму для восстановления и оптимальной работы.

Ознакомьтесь с нашим руководством по протеину для женщин, чтобы узнать больше о том, как правильно выбрать протеиновый порошок для вас.

Источники:

Незаменимые аминокислоты в первую очередь отвечают за аминокислотную стимуляцию анаболизма мышечного белка у здоровых пожилых людей.
Незаменимые аминокислоты и восстановление мышечного белка после упражнений с отягощениями
Аминокислоты с разветвленной цепью
метионин
непротеиногенные аминокислоты
лейцин
Аминокислоты и белки в образовании гемоглобина.2. Изолейцин
Что такое лизин?
треонин

незаменимых аминокислот

Аминокислоты — это мономерные соединения, которые образуют белки. Незаменимые аминокислоты не могут вырабатываться организмом, поэтому они должны поступать из нашего рациона.

Синтез незаменимых аминокислот

Незаменимые аминокислоты не синтезируются в организме человека, но синтезируются растениями или бактериями. Девять незаменимых аминокислот — это гистидин (His), изолейцин (Ile), лейцин (Leu), метионин (Met), фенилаланин (Phe), треонин (Thr), триптофан (Trp) и валин (Val).Phe и Trp — ароматические аминокислоты. Синтез этих двух аминокислот начинается с превращения фосфоенолпирувата и эритрозо-4-фосфата в хоризмат посредством шикиматного пути.

Хоризмат впоследствии превращается в Phe посредством пути биосинтеза ароматических аминокислот. Для синтеза Trp хоризмат превращается в антранилат антранилатсинтазой. Под действием 4 ферментов антранилат превращается в Trp.

Синтез His происходит в растениях.Рибозо-5-фосфат превращается в гистидинол под действием 9 ферментов. Затем гистидинол превращается в L-гистидин, который катализируется гистидинолдегидрогеназой.

Thr, Met и Ile синтезируются через семейный путь аспартата (Asp). Asp превращается в аспартилфосфат, а затем в полуальдегид аспартил. Затем полуальдегид аспартил превращается в О-фосфогомосерин. О-фосфогомосерин превращается в Thr с помощью Thr-синтазы, он также превращается в Met под действием 3 ферментов, включая Met-синтазу.

И Met, и Thr могут быть превращены в 2-оксобутаноат с помощью Met γ-синтазы и Thr дегидрогеназы соответственно. Затем 2-оксобутаноат превращается в Иль под действием 4 ферментов. Ile также может быть синтезирован из Thr другим путем под действием 5 ферментов.

Leu и Val синтезируются из пирувата в растениях. Пируват превращается в 3-метил-2-метилбутаноат под действием 3 ферментов. 3-Метил-2-метилбутаноат может быть превращен в Val с помощью аминотрансферазы с разветвленной цепью (BCAT), а также может быть преобразован в Leu под действием 3 ферментов, включая BCAT.

Основные незаменимые аминокислоты с обозначенными радикалами, химические структурные формулы. Кредит изображения: Chromatos / Shutterstock

Метаболизм основных аминокислот

Незаменимые аминокислоты участвуют во многих путях и процессах, которые имеют решающее значение для гомеостаза организма. Met необходим для синтеза цистеина (Cys). Конденсация АТФ и Met катализируется Met аденозилтрансферазой (MAT), которая создает S-аденозилметионин (SAM).Затем SAM может быть преобразован в Cys под действием 3 ферментов. SAM также используется ДНК-метилтрансферазами при метилировании остатков цитидина, обнаруженных в динуклеотидах CpG в ДНК, которые регулируют экспрессию генов.

Phe синтезируется в Tyr, который катализируется фенилаланингидроксилазой. Phe также может быть включен в полипептидные цепи. Thr катаболизируется в митохондриях у млекопитающих, что катализируется треониндегидрогеназой (TDH), продуцирующей α-амино-β-кетобутират.Α-амино-β-кетобутират может быть преобразован в ацетил-КоА и глицин под действием α-амино-β-кетобутират-кофермента А лигазы, или он может разлагаться в аминоацетон, который будет преобразован в пируват.

Leu, Ile и Val — все аминокислоты с разветвленной цепью (BCAA). Катаболизм этих аминокислот является самым высоким в скелетных мышцах, но также наблюдается в большинстве клеток организма. Катаболизм BCAA также производит NADH и FADh3, которые используются для выработки АТФ. Это причина высокой скорости катаболизма BCAA в скелетных мышцах.

Первые несколько этапов катаболизма BCAA включают трансаминирование с использованием аминотрансферазы с разветвленной цепью (BCAT) с 2-оксоглутаратом в качестве аминоакцептора. Используя реакцию BCAT, три BCCA превращаются в три различных α-кетокислоты, которые окисляются с использованием комплекса дегидрогеназы α-кетокислот с разветвленной цепью (BCKD). Это дает три различных производных КоА, каждое из которых может быть преобразовано в более полезные соединения. Активность BCKD ингибируется фосфорилированием и активируется дефосфорилированием.Во время этого пути Ile в конечном итоге становится ацетил-CoA и пропионил-CoA, Leu в конечном итоге становится ацетил-CoA и ацетоацетатом, а Val в конечном итоге становится пропионил-CoA.

В заключение, незаменимые аминокислоты очень важны для многих метаболических процессов в организме. Они необходимы для производства других заменимых аминокислот, а также участвуют в таких процессах, как регуляция генов и генерация АТФ. Совершенно очевидно, что синтез и метаболизм незаменимых аминокислот очень сложны, поэтому дополнительные исследования в этой области дадут лучшее понимание этих процессов.

Незаменимые аминокислоты — обзор

7.3.2 Незаменимые аминокислоты

Хотя NEAA могут синтезироваться в организме рыб, сообщалось, что их пищевые добавки могут улучшать, а могут и не улучшать продуктивность, физиологические функции и иммунный ответ рыб. в зависимости от вида рыб (Gaye-Siessegger et al., 2007). Было проведено всего несколько исследований влияния NEAA на показатели тилапии. Mambrini и Kaushik (1994) обнаружили, что замена 25% диетического белка аланином, глутаматом или глицином в рационах с нильской тилапией приводила к 10% снижению роста рыб.Замена 50% смесью трех NEAA привела к заметному снижению роста, более низкому удержанию азота и более высокой экскреции азота. Аналогичные результаты были получены Gaye-Siessegger et al. (2007), где использование синтетических аминокислот нильской тилапией было низким.

В последнее время большое внимание уделяется таурину как пищевой добавке для выращиваемой рыбы и моллюсков (El-Sayed, 2014). Таурин, или 2-аминоэтансульфоновая кислота, является конечным продуктом метаболизма серосодержащих аминокислот.Это нейтральная β-аминокислота, в которой могут быть ионизированы как аминогруппа, так и сульфоновая группа (Jacobsen and Smith, 1968). Несмотря на то, что таурин не включается в белки и не разлагается тканями млекопитающих (Kuzmina et al., 2010), это самая распространенная свободная аминокислота в тканях животных, составляющая 30–50% от всего пула аминокислот, в зависимости от по видам животных (Якобсен и Смит, 1968).

Исторически таурин не считался важным питательным веществом для рыб. Однако недавние исследования показали, что таурин условно необходим, когда этим рыбам дают пищу на основе растительного белка с дефицитом метионина и / или цистеина.Необходимость таурина для выращиваемой рыбы зависит от вида и размера рыб, естественных привычек питания и предшествующей истории кормления рыб (Takagi et al., 2008; Kuzmina et al., 2010; El-Sayed, 2014). Таурин участвует во многих физиологических функциях, включая развитие мышечной и нервной систем, антиокисление и детоксикацию, модуляцию иммунного ответа, транспорт кальция, развитие сетчатки, метаболизм желчных кислот, осмотическую регуляцию и эндокринные функции (El-Sayed, 2014).

Несколько недавних исследований оценивали влияние дополнительного таурина на рост и репродуктивную способность нильской тилапии.Gonçalves et al. (2011) обнаружили, что дополнительный таурин необходим для оптимальной продуктивности личинок нильской тилапии ( O. niloticus ). Аналогичные результаты были получены Al-Feky et al. (2016a). Личинки нильской тилапии, получавшие рацион на основе SBM с добавлением экзогенного пищевого таурина, показали значительно лучший рост, выживаемость и эффективность кормления, чем те, которые получали рацион без таурина. Для оптимальной производительности требовалось около 9,7 г / кг -1 диетического таурина. Аль-Феки и др. (2016b) также обнаружили, что показатели нереста, включая частоту нереста, общее количество нерестов на аквариум, количество нерестов на самку и абсолютную плодовитость, были значительно улучшены при увеличении диетического таурина до 0.8%. Яйца, полученные от маточного стада, скармливаемого 8,3 г таурина -1 кг, показали значительно более высокую выводимость и требовали более короткого времени для вылупления и всасывания желточного мешка, а также приводили к более высокому весу личинок, чем при других уровнях таурина в рационе. Эти результаты продемонстрировали неспособность нильской тилапии синтезировать таурин и предполагают, что экзогенный таурин необходим для оптимального роста и репродуктивной способности этих рыб. Взаимодействие между диетическим таурином и метионином в рационе на основе растительного белка, получавшего нильскую тилапию, также было продемонстрировано Michelato et al.(2018). Корм для рыб с добавлением метионина, таурина или их смеси демонстрировал сходные показатели роста. Это указывает на то, что добавление таурина в рацион оказывает щадящее влияние на потребность нильской тилапии в метионине.

Незаменимые аминокислоты — обзор

F Сохранение пищевых продуктов и производство пищевых и кормовых ингредиентов

Ферментация — это экономичный процесс консервирования пищевых продуктов, который также может улучшить вкус, аромат и текстуру пищи, улучшить ее питательные качества и усвояемость, детоксикация загрязненных пищевых продуктов и сокращение времени приготовления и потребности в топливе (Liu et al ., 2011б). Во многих развивающихся странах ферментированные продукты являются важными составляющими рациона и производятся в основном в домашних хозяйствах и деревнях. Таким образом, большинство мелкомасштабных ферментаций основано на спонтанных процессах, возникающих в результате деятельности различных микроорганизмов, связанных с сырьем пищевым материалом и окружающей средой. Большинство ферментированных продуктов в Африке производится путем спонтанной ферментации, например, Cingwada (ферментированная маниока) в Восточной и Центральной Африке, Kenkey (ферментированная кукуруза) в Гане и Owoh (ферментированные семена хлопка) в Западной Африке (FAO, 2011e). .Однако ограничения включают усиленную лаг-фазу роста микробов, связанную с заражением конкурирующими микроорганизмами, то есть более высокую вероятность порчи, изменчивое качество продукта и более низкий выход продукта (Holzapfel, 2002).

Заквасочные культуры — это препараты живых микроорганизмов, которые добавляются для инициирования и / или ускорения процессов ферментации (FAO, 2011e). Заквасочная культура может быть получена посредством практики обратного отваивания (добавление образца из предыдущей успешной партии ферментации) или может быть «определенной заквасочной культурой», состоящей из одного или нескольких штаммов, обычно получаемых путем поддержания чистой культуры и размножения в асептических условиях. (ФАО, 2011e).Примеры ферментированных пищевых продуктов, произведенных с использованием процесса обратного отваивания, включают ферментированные злаки и зерно в Африке и ферментированные рыбные соусы и овощи в Азии (FAO, 2011e). Штаммы, отобранные для определенных заквасок, должны обладать несколькими желательными метаболическими характеристиками, не обладать токсикогенной активностью, а также подходить для крупномасштабного производства (Gänzle, 2009). Определенные заквасочные культуры позволяют стандартизировать процесс вместе с пониженным риском для здоровья и часто включают дополнительные культуры для подавления патогенных организмов или организмов, вызывающих порчу пищевых продуктов, а также для улучшения качества продукции (Mendoza et al ., 2011; Сеттанни и Москетти, 2010).

Молочнокислые бактерии являются преобладающими микроорганизмами в пищевых ферментациях. Они превращают углеводы либо в молочную кислоту, либо в углекислый газ и этанол в дополнение к молочной кислоте и отвечают за многие продукты, такие как ферментированные колбасы, все ферментированное молоко, маринованные овощи и хлеб из кислого теста (Flores and Toldra, 2011; Liu et al. al ., 2011b; Steinkraus, 2002). Бактерии уксусной кислоты важны в пищевой промышленности из-за их способности окислять сахара и спирты в органические кислоты и используются в производстве уксуса, а также в ферментациях какао и кофе (Sengun and Karabiyikli, 2011).Третья группа бактерий, принадлежащих к роду Bacillus , гидролизует белки до аминокислот и пептидов и выделяет аммиак. Такая щелочная ферментация семян растений, а также бобовых дает богатые белком приправы, особенно в Африке и Азии (Parkouda et al ., 2009). Ферментация дрожжей, обычно с участием видов Saccharomyces , приводит к образованию этанола и углекислого газа из сахара и широко используется для производства квасного хлеба и сброженных напитков, таких как вино и пиво (Sicard and Legras, 2011).

Ферментация, ведущая к обогащению традиционных пищевых продуктов питательными веществами, может иметь огромное влияние на рацион питания людей в развивающихся странах, которые в значительной степени зависят от одного основного продукта, такого как маниока, кукуруза или рис, для существования. Например, ферментация риса для производства ленточного кетана в Индонезии приводит к удвоению содержания белка и обогащению лизином, незаменимой аминокислотой. Точно так же пульке, производимая ферментацией сока агавы в Мексике, богата витаминами, такими как тиамин, рибофлавин, ниацин, биотин и пантотеновая кислота (Steinkraus, 2002).

Незаменимые аминокислоты, образующиеся в результате микробной ферментации, также используются в качестве добавки к корму для домашнего скота на основе зерна, как для повышения продуктивности, так и для уменьшения выделения азота животными в окружающую среду (FAO, 2011c). В настоящее время ежегодное глобальное использование l-лизина, первой ограничивающей аминокислоты для свиней и второй ограничивающей аминокислоты после метионина для птицы, оценивается в 900 000 тонн, за которыми следуют 65 000 тонн для l-треонина и 1900 тонн для l-триптофана. (Ким, 2010).L-валин кормового качества продается в ЕС, в то время как l-глутамин, также производимый в процессе ферментации, доступен в Южной Америке и некоторых странах Азии (Kim, 2010). Кроме того, в корма для животных все чаще включаются экзогенные микробные ферменты. Дополнительная фитаза, наиболее широко используемый кормовой фермент, улучшает использование фосфора, а также других минералов у свиней и домашней птицы и может снизить выведение фосфора на 50% (Singh et al ., 2011b).Фитаза недавно также была одобрена для использования в кормах для лососевых в ЕС. 184 Другими экзогенными ферментами, используемыми в качестве кормовых добавок для улучшения пищеварения, являются ксиланазы, глюканазы, протеазы и амилазы (FAO, 2011c).

Микробные ферменты, полученные путем ферментации в контролируемых условиях, обычно используются в пищевой промышленности. Например, α-амилазы применяются для превращения крахмала в сиропы фруктозы и глюкозы (Souza and Magalhães, 2010), протеазы, такие как химозин, используются в сыроделии, пектиназы используются для экстракции, осветления и концентрирования фруктовых соков, а также танназы. используются для производства растворимого чая (Aguilar et al ., 2008). Микроорганизмы также используются для создания летучих ароматизаторов, которые обладают желательными свойствами, такими как антимикробная и антиоксидантная активность в дополнение к сенсорным свойствам, и более 100 ароматических химикатов доступны на рынке (Berger, 2009). В последние годы растет интерес к использованию процессов микробной ферментации для производства биоэтанола и биодизеля (Cheng and Timilsina, 2010; Demain, 2009; Ruane et al ., 2010; Shi et al ., 2011).

Различные характеристики выведения аминокислот с мочой у людей и использование аминокислотных добавок для снижения утомляемости и ухудшения здоровья у взрослых | Nutrition Journal

  • 1.

    Boirie Y. Физиопатологический механизм саркопении. J Nutr Здоровье старения. 2009; 13: 717–23.

    CAS Статья PubMed Google Scholar

  • 2.

    Jagoe RT, Engelen MPKJ. Мышечное истощение и изменения метаболизма мышечных белков при хронической обструктивной болезни легких.Eur Respir J. 2003; 22: 52s – 63s.

    CAS Статья Google Scholar

  • 3.

    Oehler R, Roth E. Метаболизм глутамина. В: Кинобер Л.А., редактор. Метаболические и терапевтические аспекты аминокислот в лечебном питании. Издание второе. Нью-Йорк: CRC Press; 2004. с. 169–82.

    Google Scholar

  • 4.

    Udenfriend S, Wyngaarden JB. Предшественники адреналина и норадреналина in vivo.Biochim Biophys Acta. 1956; 20: 48–52.

    CAS Статья PubMed Google Scholar

  • 5.

    де Конинг Т.Дж., Снелл К., Дюран М., Бергер Р., Опрос-Би-Т, Сёртиз Р. L-серин в болезни и развитии. Биохим Дж. 2003; 371: 653–61.

    Артикул PubMed PubMed Central Google Scholar

  • 6.

    Poortmans JR, Carpentier LO, Pereira-Lancha LO, Lancha Jr A.Белковый обмен, потребности в аминокислотах и ​​рекомендации для спортсменов и активных групп населения. Braz J Med Biol Res. 2012; 45: 875–90.

    CAS Статья PubMed PubMed Central Google Scholar

  • 7.

    Филлипс С.М. Потребность в белке и добавки в силовых видах спорта. Питание. 2004. 20: 689–95.

    CAS Статья PubMed Google Scholar

  • 8.

    Waterlow JC, Джексон AA. Питание и белковый обмен в человеке. Br Med Bull. 1981; 37: 5–10.

    CAS Статья PubMed Google Scholar

  • 9.

    Corsetti R, Barassi A, Perego S, Sansoni V, Rossi A, Damele CAL, d’Eril GM, Banfi G, Lombardi G. Изменения экскреции аминокислот с мочой в зависимости от маркеров мышечной активности над профессиональными велогонка: в поисках маркеров усталости. Аминокислоты. 2016; 48: 183–92.

    CAS Статья PubMed Google Scholar

  • 10.

    Dunstan RH, Sparkes DL, Dascombe BJ, Evans CA, Macdonald MM, Crompton MJ, Franks J, Murphy G, Gottfries J, Carlton B. Sweat способствовал потере аминокислот у лошадей стандартной породы и применению добавок стратегии для поддержания кондиции во время тренировок. Comp Exercise Physiol. 2015; 11: 201–12.

    Артикул Google Scholar

  • 11.

    Данстан Р., Спаркс Д.Л., Даскомб Б.Дж., Макдональд М.М., Эванс К.А., Стивенс С.Дж., Кромптон М.Дж., Готфрис Дж., Фрэнкс Дж., Мерфи Дж. И др. Пот способствует потере аминокислот у спортсменов-мужчин во время упражнений при 32-34 ° C. PLoS One. 2016; 11: 1–16.

    Артикул Google Scholar

  • 12.

    Dunstan RH. Измененный аминокислотный гомеостаз и развитие утомляемости пациентов лучевой терапии рака груди: пилотное исследование. Clin Biochem. 2011; 44: 208–15.

  • 13.

    Niblett SN. Гематологические аномалии и аномалии мочевыделения у пациентов с синдромом хронической усталости. Exp Biol Med. 2007; 232: 1041–9.

    CAS Статья Google Scholar

  • 14.

    Liappis N, Hungerland H. Количественное исследование свободных аминокислот в эккринном поте человека при нормальных условиях. Am J Clin Nutr. 1972; 25: 661–3.

    CAS PubMed Google Scholar

  • 15.

    Армстронг, доктор медицины, Став У. Исследование уровней свободных аминокислот в плазме. II. Нормальные значения для детей и взрослых. Обмен веществ. 1973; 22: 561–9.

    CAS Статья PubMed Google Scholar

  • 16.

    Weschler LB. Концентрация электролитов пота, полученная из окклюзионных покрытий, ложно высока, потому что пот сам вымывает электролиты кожи. J Appl Physiol. 2008; 105: 1376–7.

    Артикул PubMed Google Scholar

  • 17.

    Скотт И.Р., Хардинг С.Р., Барретт Дж. Богатый гистидином белок гранул кератогиалина. Источник свободных аминокислот, урокановой кислоты и пирролидонкарбоновой кислоты в роговом слое. Biochim Biophys Acta. 1982; 719: 110–7.

    CAS Статья PubMed Google Scholar

  • 18.

    Кингсбери К.Дж., Кей Л., Хьельм М. Контрастные образцы свободных аминокислот в плазме крови у элитных спортсменов: связь с усталостью и инфекцией. Br J Sports Med.1998. 32: 25–32.

    CAS Статья PubMed PubMed Central Google Scholar

  • 19.

    Паддон-Джонс Д. Атрофия и нарушение синтеза мышечного белка при длительном бездействии и стрессе. J Clin Endocrinol Metabol. 2006; 91: 4836–41.

    CAS Статья Google Scholar

  • 20.

    Данстан Р.Х., Спаркс Д.Л., Робертс Т.К., Кромптон М.Дж., Готфрис Дж., Даскомб Б.Дж.Разработка комплексной аминокислотной добавки fatigue reviva ™ для перорального приема: первоначальная оценка концепции продукта и влияние на симптомы слабого здоровья в группе мужчин. Нутр Дж. 2013; 12: 115.

    CAS Статья PubMed PubMed Central Google Scholar

  • 21.

    Данстан Р.Х., Спаркс Д.Л., Робертс Т.К., Даскомб Б.Дж. Предварительные оценки комплексной аминокислотной добавки Reviva TM для снижения утомляемости в группе профессиональных спортсменов-мужчин и в группе мужчин, привлеченных из широкой публики.Food Nutr Sci. 2014; 5: 231–5.

    Артикул Google Scholar

  • 22.

    Данстан Р.Х., МакГрегор Н.Р., Батт Х.Л., Робертс Т.К., Клайнберг И.Дж., Ниблетт С.Н., Роткирх Т.Б., Баттфилд I. Характеристика дифференциального гомеостаза аминокислот среди подгрупп населения: основа для определения конкретных потребностей в аминокислотах. J Nutr Environ Med. 2000; 10: 211–23.

    CAS Статья Google Scholar

  • 23.

    Ватанабе Н., Стюарт Р., Дженкинс Р., Бхугра Д. К., Фурукава Т. А.. Эпидемиология хронической усталости, соматических заболеваний и симптомов распространенных психических расстройств: перекрестное исследование из второго британского национального исследования психиатрической заболеваемости. J Psychosom Res. 2008. 64: 357–62.

    Артикул PubMed Google Scholar

  • 24.

    Ли Г, Се Ф, Ян С., Ху Х, Цзинь Б., Ван Дж, Ву Дж, Инь Д., Се В. Субздоровье: определение, критерии диагностики и потенциальная распространенность в центральном регионе Китая.BMC Public Health. 2013; 13.

  • 25.

    Эванс К., Данстан Р.Х., Роткирх Т., Робертс Т.К., Райхелт К.Л., Косфорд Р., Дид Дж., Эллис Э.Б., Спаркс Д.Л. Нарушение экскреции аминокислот у детей с аутизмом. Nutr Neurosci. 2008; 11: 9–17.

    CAS Статья PubMed Google Scholar

  • 26.

    Чалдер Т., Береловиц Г., Павликовска Т., Уоттс Л., Уэссели С., Райт Д., Уоллес Е.П. Развитие шкалы утомляемости. J Psychosom Res.1993; 37: 147–53.

    CAS Статья PubMed Google Scholar

  • 27.

    МакГрегор Н.Р., Данстан Р.Х., Зербес М., Батт Х.Л., Робертс Т.К., Клайнберг И.Дж. Предварительное определение связи между выражением симптомов и метаболитами в моче у субъектов с синдромом хронической усталости. Biochem Mol Med. 1996. 58: 85–92.

    CAS Статья PubMed Google Scholar

  • 28.

    Данстан Р.Х., МакГрегор Н.Р., Батт Г.Л., Робертс Т.К. Биохимические и микробиологические аномалии при синдроме хронической усталости: разработка лабораторных тестов и возможная роль токсичных химикатов. J Nutr Environ Med. 1999; 9: 97–108.

    CAS Статья Google Scholar

  • 29.

    Ричардс Р.С., Робертс Т.К., МакГрегор Н.Р., Данстан Р.Х., Батт Х.Л. Параметры крови, указывающие на окислительный стресс, связаны с выражением симптомов синдрома хронической усталости.Redox Rep. 2000; 5: 35–41.

    CAS Статья PubMed Google Scholar

  • 30.

    Коды пищевых стандартов Австралии и Новой Зеландии [http://www.comlaw.gov.au/Search/Australia%20New%20Zealand%20Food%20Standards]. По состоянию на 13 июня 2013 г.

  • 31.

    Закон о пищевых продуктах 2003 г. № 43 [http://www.legislation.nsw.gov.au/viewtop/inforce/act+43+2003+FIRST+0+N/]. По состоянию на 13 июня 2013 г.

  • 32.

    Положение о пищевых продуктах 2010 г. [http: // www.законодательство.nsw.gov.au/viewtop/inforce/subordleg+250+2010+cd+0+N]. По состоянию на 13 июня 2013 г.

  • 33.

    Clemens RA, Kopple JD, Swendseid ME. Метаболические эффекты диет с дефицитом гистидина, скармливаемых растущим крысам через желудочный зонд. J Nutr. 1984; 114: 2138–46.

    CAS PubMed Google Scholar

  • 34.

    Куперман Дж. М., Лопес Р. Роль гистидина при анемии дефицита фолиевой кислоты. Exp Biol Med. 2002; 227: 998–1000.

    CAS Google Scholar

  • 35.

    Виру А., Виру А. Биохимический мониторинг спортивной тренировки. 1-е изд. Шампейн: Издательство Human Kinetics; 2001.

    Google Scholar

  • 36.

    Хараламби Г., Берг А. Изменения мочевины и аминоазота в сыворотке в зависимости от продолжительности упражнений. Eur J Phys Occup Physiol. 1976; 36: 39–48.

    CAS Статья Google Scholar

  • 37.

    Hedges REM, Clement JG, Thomas DL, O’Connell TC.Обмен коллагена в средней части диафиза бедренной кости у взрослых: смоделировано на основе измерений антропогенных радиоуглеродных индикаторов. Am J Phys Anthropol. 2007. 133: 808–16.

    Артикул PubMed Google Scholar

  • 38.

    Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Метаболизм глицина у животных и людей: последствия для питания и здоровья. Аминокислоты. 2013; 45: 463–77.

    Артикул PubMed Google Scholar

  • 39.

    Кори JG. Метаболизм пуриновых и пиримидиновых нуклеотидов. В: Devlin TM, редактор. Учебник биохимии с клиническими корреляциями. 3-е изд. Нью-Йорк: Вили-Лисс; 1992. стр. 529–73.

    Google Scholar

  • 40.

    Fessas PH, Koniavitis A, Zeis A. Экскреция бета-аминоизомасляной кислоты с мочой при талассемии. J Clin Pathol. 1969; 22: 154–7.

    CAS Статья PubMed PubMed Central Google Scholar

  • 41.

    Энхьяргал Т., Цереннадмид С. Выведение с мочой бета-аминоизомасляной кислоты при гематологических заболеваниях (аннотация). Риншо Бёри Jpn J Clin Pathol. 2004; 52: 17–21.

    CAS Google Scholar

  • 42.

    Мацумото AM. Андропауза: клинические последствия снижения уровня тестостерона в сыворотке с возрастом у мужчин. J Gerontol. 2002; 57A: M76–99.

    CAS Статья Google Scholar

  • 43.

    Новак А., Брод М., Эльберс Дж. Андропауза и качество жизни: результаты фокус-групп пациентов и клинических экспертов. Maturitas. 2002; 43: 231–7.

    CAS Статья PubMed Google Scholar

  • 44.

    Bain J. Заместительная терапия тестостероном для пожилых мужчин. Может Фам Врач. 2001; 47: 91–7.

    CAS PubMed PubMed Central Google Scholar

  • 45.

    Ногейра Аде С., Вале Р.Г., Гомес А.Л., Дантас Э.Влияние мышечных воздействий на уровень повреждения соединительной ткани. Res Sports Med. 2011; 19: 259–70.

    PubMed Google Scholar

  • 46.

    Prockop DJ, Sioerdsma D. Значение гидроксипролина в моче у человека. Clin Invest. 1961; 40: 843–9.

    CAS Статья Google Scholar

  • 47.

    Кьяер М., Хансен М. Тайна женской соединительной ткани. J Appl Physiol.2008; 105: 1026–7.

    Артикул PubMed Google Scholar

  • 48.

    Джейсон Л.А., Ричман Дж. А., Радемейкер А. В., Джордан К. М., Плиоплис А. В., Тейлор Р. Р., Маккриди В., Хуанг С. Ф., Плиоплис С. Исследование синдрома хронической усталости на уровне сообщества. Arch Intern Med. 1999; 159: 2129–37.

    CAS Статья PubMed Google Scholar

  • 49.

    Уэссели С. Эпидемиология синдрома хронической усталости.Epidemiologic Rev.1995; 17: 139–51.

    CAS Статья Google Scholar

  • 50.

    Будес П. Комплаенс в терапевтических испытаниях: обзор. Контрольные клинические испытания. 1998. 19: 257–68.

    CAS Статья PubMed Google Scholar

  • 51.

    Селла М., Чалдер Т. Измерение утомляемости в клинических условиях и в общественных местах. J Psychosom Res. 2010; 69: 17–22.

    Артикул PubMed Google Scholar

  • Незаменимые аминокислоты

    Аминокислоты — это органические соединения, содержащие как аминогруппу, так и карбоксильную группу.Согласно Тиллери и др., Человеческое тело может синтезировать все аминокислоты, необходимые для построения белков, за исключением десяти, называемых «незаменимыми аминокислотами», которые обозначены звездочками на иллюстрациях аминокислот. Адекватная диета должна содержать эти незаменимые аминокислоты. Обычно они поставляются в виде мясных и молочных продуктов, но если они не потребляются, необходимо проявлять осторожность, чтобы обеспечить их достаточное количество. Они могут быть снабжены комбинацией злаков (пшеница, кукуруза, рис и т. Д.).) и бобовых (фасоль, арахис и т. д.). Тиллери указывает, что ряд популярных этнических продуктов включает такую ​​комбинацию, так что в одном блюде можно надеяться получить десять незаменимых аминокислот. Мексиканская кукуруза и фасоль, японский рис и соевые бобы, а также красная каджунская фасоль и рис являются примерами таких случайных комбинаций.

    Биологический проект Университета Аризоны дает следующее резюме: «10 аминокислот, которые мы можем производить, — это аланин, аспарагин, аспарагиновая кислота, цистеин, глутаминовая кислота, глутамин, глицин, пролин, серин и тирозин.Тирозин вырабатывается из фенилаланина, поэтому, если в диете не хватает фенилаланина, также потребуется тирозин. Незаменимые аминокислоты (которые мы не можем производить внутренне) — это аргинин (необходимый для молодых, но не для взрослых), гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Эти аминокислоты необходимы в рационе. Растения, конечно, должны уметь производить все аминокислоты. С другой стороны, у людей нет всех ферментов, необходимых для биосинтеза всех аминокислот.«

    Неспособность получить даже 1 из 10 незаменимых аминокислот в достаточном количестве имеет серьезные последствия для здоровья и может привести к деградации белков организма.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *